REFERENCES
Ardiansyah, A. (2012). Replay a Log on Petri Net for
Conformance Analysis-plugin.pdf.
Beaulieu-Jones, B. K., Orzechowski, P., & Moore, J. H.
(2018). Mapping patient trajectories using longitudinal
extraction and deep learning in the MIMIC-III critical
care database. Pacific Symposium on Biocomputing,
0(212669), 123–132. https://doi.org/10.1142/978981
3235533_0012
Boyd, K. M. (2000). Disease, illness, sickness, health,
healing and wholeness: Exploring some elusive
concepts. Medical Humanities, 26(1), 9–17.
https://doi.org/10.1136/mh.26.1.9
Casey, J. A., Schwartz, B. S., Stewart, W. F., & Adler, N.
E. (2016). Using Electronic Health Records for
Population Health Research: A Review of Methods and
Applications. Annual Review of Public Health, 37(1),
61–81. https://doi.org/10.1146/annurev-publhealth-
032315-021353
Celonis GmbH. (2019). Celonis. Retrieved from
https://www.celonis.com/
Cordella, L. P., Foggia, P., Sansone, C., & Vento, M.
(2001). An improved algorithm for matching large
graphs. 3rd IAPR-TC15 Workshop on Graph-Based
Representations in Pattern Recognition, 149–159.
Retrieved from https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.101.5342
European Medicines Agency. (2002). Note for the
Guidance on Good Clinical Practice. Retrieved from
https://www.ema.europa.eu/en/documents/scientific-
guideline/ich-e6-r1-guideline-good-clinical-practice_
en.pdf
Farid, N., De Kamps, M., & Johnson, O. (2019). Process
Mining in Frail Elderly Care: A Literature Review.
Biomedical Engineering Systems and Technologies, 5,
332–339. https://doi.org/10.5220/0007392903320339
Fluxicon BV. (2019). Disco. Retrieved from https://flux
icon.com/disco/
Fox, F., Aggarwal, V. R., Whelton, H., & Johnson, O.
(2018). A data quality framework for process mining of
electronic health record data. Proceedings - 2018 IEEE
International Conference on Healthcare Informatics,
ICHI 2018, 12–21. https://doi.org/10.1109/ICHI.
2018.00009
Futoma, J., Morris, J., & Lucas, J. (2015). A comparison of
models for predicting early hospital readmissions.
Journal of Biomedical Informatics, 56, 229–238.
https://doi.org/10.1016/j.jbi.2015.05.016
Giannoula, A., Gutierrez-Sacristán, A., Bravo, Á., Sanz, F.,
& Furlong, L. I. (2018). Identifying temporal patterns
in patient disease trajectories using dynamic time
warping: A population-based study. Scientific Reports
2018 8:1, 8(1), 4216. https://doi.org/10.1038/s41598-
018-22578-1
Glicksberg, B. S., Li, L., Badgeley, M. A., Shameer, K.,
Kosoy, R., Beckmann, N. D., … Dudley, J. T. (2016).
Comparative analyses of population-scale phenomic
data in electronic medical records reveal race-specific
disease networks. Bioinformatics, 32(12), i101–i110.
https://doi.org/10.1093/bioinformatics/btw282
Goldberg, M. (2003). The graph isomorphism problem. In
J. L. Gross & J. Yellen (Eds.), Handbook of graph
theory (2nd ed., pp. 68–78). Boca Raton, FL: CRC
Press.
Hanauer, D. A., & Ramakrishnan, N. (2013). Modeling
temporal relationships in large scale clinical
associations. Journal of the American Medical
Informatics Association, 20(2), 332–341. https://doi.
org/10.1136/amiajnl-2012-001117
Hemingway, H., Asselbergs, F. W., Danesh, J., Dobson, R.,
Maniadakis, N., Maggioni, A., … Denaxas, S. (2018).
Big data from electronic health records for early and
late translational cardiovascular research: Challenges
and potential. European Heart Journal, 39(16), 1481–
1495. https://doi.org/10.1093/eurheartj/ehx487
Hidalgo, C. A., Blumm, N., Barabási, A.-L., & Christakis,
N. A. (2009). A Dynamic Network Approach for the
Study of Human Phenotypes. PLoS Computational
Biology, 5(4), e1000353.
https://doi.org/10.1371/journal.pcbi.1000353
Jensen, A. B., Moseley, P. L., Oprea, T. I., Ellesøe, S. G.,
Eriksson, R., Schmock, H., … Brunak, S. (2014).
Temporal disease trajectories condensed from
population-wide registry data covering 6.2 million
patients. Nature Communications, 5(May), 1–10.
https://doi.org/10.1038/ncomms5022
Jensen, K., Soguero-Ruiz, C., Oyvind Mikalsen, K.,
Lindsetmo, R. O., Kouskoumvekaki, I., Girolami, M.,
… Magne Augestad, K. (2017). Analysis of free text in
electronic health records for identification of cancer
patient trajectories. Scientific Reports, 7. https://doi.
org/10.1038/srep46226
Jensen, P. B., s, L. J., & Brunak, S. (2012). Mining
electronic health records: Towards better research
applications and clinical care. Nature Reviews
Genetics, Vol. 13, pp. 395–405. https://doi.org/
10.1038/nrg3208
Ji, X., Chun, S. A., & Geller, J. (2016). Predicting
Comorbid Conditions and Trajectories Using Social
Health Records. IEEE Transactions on Nano
bioscience, 15(4), 371–379. https://doi.org/10.1109/
TNB.2016.2564299
Kluyver, T., Ragan-kelley, B., Pérez, F., Granger, B.,
Bussonnier, M., Frederic, J., … Willing, C. (2016).
Jupyter Notebooks—a publishing format for
reproducible computational workflows. In Positioning
and Power in Academic Publishing: Players, Agents
and Agendas. https://doi.org/10.3233/978-1-61499-
649-1-87
Kurniati, A. P., Johnson, O., Hogg, D., & Hall, G. (2016).
Process Mining in Oncology: a Literature Review.
Information Communication and Management
(ICICM). https://doi.org/10.1109/INFOCOMAN.
2016.7784260
Kusuma, G., Bennett, B., & Johnson, O. (2017). Process
analysis in cardiovascular disease using process
mining. Abstract 621 in Scott P.J. et Al. Journal of
Innovation in Health Informatics, 24(1), 171.
https://doi.org/10.14236/jhi.v24i1.939