Journal of Civil Engineering, 23(10):4493–4502.
Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., and
Agrawal, A. (2017). Deep convolutional neural net-
works with transfer learning for computer vision-based
data-driven pavement distress detection. Construction
and Building Materials, 157:322 – 330.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 770–778.
Hssayeni, M. D., Saxena, S., Ptucha, R., and Savakis, A.
(2017). Distracted driver detection: Deep learning vs
handcrafted features. Electronic Imaging, 2017(10):20–
26.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2261–2269.
Huang, Y., Qiu, C., and Yuan, K. (2018). Surface defect
saliency of magnetic tile. The Visual Computer.
Kensert, A., Harrison, P. J., and Spjuth, O. (2019). Transfer
learning with deep convolutional neural networks for
classifying cellular morphological changes. SLAS DIS-
COVERY: Advancing Life Sciences R&D, 24(4):466–
475. PMID: 30641024.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.
Kumar, A. (2008). Computer-vision-based fabric defect
detection: A survey. IEEE Transactions on Industrial
Electronics, 55(1):348–363.
Kumar, A. and Pang, G. K. H. (2002). Defect detection in
textured materials using gabor filters. IEEE Transac-
tions on Industry Applications, 38(2):425–440.
Ling, C. X., Huang, J., and Zhang, H. (2003). Auc: A sta-
tistically consistent and more discriminating measure
than accuracy. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, IJCAI’03,
pages 519–524, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.
Marnissi, M. A., Fradi, H., and Dugelay, J. (2019). On the
discriminative power of learned vs. hand-crafted fea-
tures for crowd density analysis. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages
1–8.
Masci, J., Meier, U., Ciresan, D. C., Schmidhuber, J., and
Fricout, G. (2012). Steel defect classification with
max-pooling convolutional neural networks. The 2012
International Joint Conference on Neural Networks
(IJCNN), pages 1–6.
Matthias Wieler, T. H. (2007). Weakly supervised learning
for industrial optical inspection. https://hci.iwr.uni-
heidelberg.de/node/3616.
Mittel, D. and Kerber, F. (2019). Vision-based crack de-
tection using transfer learning in metal forming pro-
cesses. In 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation
(ETFA), pages 544–551.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.
Perez, H., Tah, J. H. M., and Mosavi, A. (2019). Deep learn-
ing for detecting building defects using convolutional
neural networks. Sensors, 19(16):3556.
Pogorelov, K., Ostroukhova, O., Petlund, A., Halvorsen, P.,
de Lange, T., Espeland, H. N., Kupka, T., Griwodz, C.,
and Riegler, M. (2018). Deep learning and handcrafted
feature based approaches for automatic detection of
angiectasia. In 2018 IEEE EMBS International Confer-
ence on Biomedical Health Informatics (BHI), pages
365–368.
See, J. E., Drury, C. G., Speed, A., Williams, A., and Kha-
landi, N. (2017). The role of visual inspection in the
21st century. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 61(1):262–266.
Serdaroglu, A., Ertuzun, A., and Ercil, A. (2006). Defect
detection in textile fabric images using wavelet trans-
forms and independent component analysis. Pattern
Recognition and Image Analysis, 16(1):61–64.
Stricker, R., Eisenbach, M., Sesselmann, M., Debes, K., and
Gross, H.-M. (2019). Improving visual road condition
assessment by extensive experiments on the extended
gaps dataset. In International Joint Conference on
Neural Networks (IJCNN), pages 1–8.
Sun, X., Gu, J., Tang, S., and Li, J. (2018). Research progress
of visual inspection technology of steel products a
review. Applied Sciences, 8(11).
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C.
(2018). A survey on deep transfer learning. In ICANN
2018.
Torrey, L. and Shavlik, J. W. (2009). Transfer learning.
Tsai, D.-M. and Huang, T.-Y. (2003). Automated surface
inspection for statistical textures. Image and Vision
Computing, 21(4):307 – 323.
Yu, H., Li, Q., Tan, Y., Gan, J., Wang, J., Geng, Y., and Jia, L.
(2019). A coarse-to-fine model for rail surface defect
detection. IEEE Transactions on Instrumentation and
Measurement, 68(3):656–666.
Zhang, H., Chen, Z., Zhang, C., Xi, J., and Le, X. (2019).
Weld defect detection based on deep learning method.
In 2019 IEEE 15th International Conference on Au-
tomation Science and Engineering (CASE), pages
1574–1579.
Defect Detection using Deep Learning from Minimal Annotations
513