Dantas Dias Junior, J., Backes, A., and Escarpinati,
M. (2019). Detection of control points for uav-
multispectral sensed data registration through the
combining of feature descriptors. pages 444–451.
Donoser, M. and Bischof, H. (2006). Efficient maximally
stable extremal region (mser) tracking. In 2006 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 1, pages
553–560. Ieee.
Douarre, C., Crispim-Junior, C. F., Gelibert, A., Tougne,
L., and Rousseau, D. (2019). A strategy for mul-
timodal canopy images registration. In 7th Interna-
tional Workshop on Image Analysis Methods in the
Plant Sciences, Lyon, France.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Jin, X.-l., Diao, W.-y., Xiao, C.-h., Wang, F.-y., Chen,
B., Wang, K.-r., and Li, S.-k. (2013). Estimation of
wheat agronomic parameters using new spectral in-
dices. PLOS ONE, 8(8):1–9.
Kamoun, E. (2019). Image registration: From sift to deep
learning.
Lechenet, M., Bretagnolle, V., Bockstaller, C., Boissinot,
F., Petit, M.-S., Petit, S., and Munier-Jolain, N. M.
(2014). Reconciling pesticide reduction with eco-
nomic and environmental sustainability in arable
farming. PLOS ONE, 9(6):1–10.
Leutenegger, S., Chli, M., and Siegwart, R. (2011). Brisk:
Binary robust invariant scalable keypoints. In 2011
IEEE international conference on computer vision
(ICCV), pages 2548–2555. Ieee.
Lombaert, H., Grady, L., Pennec, X., Ayache, N., and
Cheriet, F. (2012). Spectral demons – image registra-
tion via global spectral correspondence. In Fitzgib-
bon, A., Lazebnik, S., Perona, P., Sato, Y., and
Schmid, C., editors, Computer Vision – ECCV 2012,
pages 30–44, Berlin, Heidelberg. Springer Berlin Hei-
delberg.
Mair, E., Hager, G. D., Burschka, D., Suppa, M., and
Hirzinger, G. (2010). Adaptive and generic corner de-
tection based on the accelerated segment test. In Euro-
pean conference on Computer vision, pages 183–196.
Springer.
Mor
´
e, J. J. (1978). The levenberg-marquardt algorithm:
Implementation and theory. In Watson, G., editor,
Numerical Analysis, volume 630 of Lecture Notes in
Mathematics, pages 105–116. Springer Berlin Heidel-
berg.
Ordonez, A., Arguello, F., and Heras, D. B. (2018). Align-
ment of hyperspectral images using kaze features. Re-
mote Sensing, 10(5).
Rabatel, G. and Labbe, S. (2016). Registration of visi-
ble and near infrared unmanned aerialvehicle images
based on Fourier-Mellin transform. Precision Agri-
culture, 17(5):564–587.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf. In
Proceedings of the 2011 International Conference on
Computer Vision, ICCV ’11, pages 2564–2571, Wash-
ington, DC, USA. IEEE Computer Society.
Sage, D. and Unser, M. (2003). Teaching image-processing
programming in java. IEEE Signal Processing Maga-
zine, 20(6):43–52. Using “Student-Friendly” ImageJ
as a Pedagogical Tool.
Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed,
S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N.,
Carter, A. H., Pumphrey, M. O., Knowles, N. R., and
Pavek, M. J. (2015). Low-altitude, high-resolution
aerial imaging systems for row and field crop pheno-
typing: A review. European Journal of Agronomy,
70:112 – 123.
Seitz, H. (2010). Contributions to the minimum linear ar-
rangement problem.
Shi, J. et al. (1994). Good features to track. In 1994 Pro-
ceedings of IEEE conference on computer vision and
pattern recognition, pages 593–600. IEEE.
Tareen, S. A. K. and Saleem, Z. (2018). A comparative
analysis of sift, surf, kaze, akaze, orb, and brisk. 2018
International Conference on Computing, Mathemat-
ics and Engineering Technologies (iCoMET), pages
1–10.
Trajkovi
´
c, M. and Hedley, M. (1998). Fast corner detection.
Image and vision computing, 16(2):75–87.
Vakalopoulou, M. and Karantzalos, K. (2014). Automatic
descriptor-based co-registration of frame hyperspec-
tral data. Remote Sensing, 6.
Vioix, J.-B. (2004). Conception et r
´
ealisation d’un dispositif
d’imagerie multispectrale embarqu
´
e : du capteur aux
traitements pour la d
´
etection d’adventices.
Zhang, H., Wohlfeil, J., and Grießbach, D. (2016). Exten-
sion and evaluation of the agast feature detector.
Zitov
´
a, B. and Flusser, J. (2003). Image registration meth-
ods: A survey. Image and Vision Computing, 21:977–
1000.
Zuiderveld, K. (1994). Contrast limited adaptive histogram
equalization. In Graphics gems IV, pages 474–485.
Academic Press Professional, Inc.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
110