Table 4: Active sampling strategy versus Heuristic Approaches to sampling the scene. We allot each algorithm 100 actions to
find a coarse registration of the scene. The non-trivial rotation case, i.e. 10 rotation bins, is shown in parentheses along side
the rotation-free, i.e. 1 rotation bin, case. The heuristic methods present a competitive benchmark in the rotation-free case
due to the simplicity. Moreover, it presents a good scenario for eliciting insights on the inner workings of the active-sampling
strategy. Our approach can be seen to learn effective strategies relative to the pragmatic heuristic approaches as seen in our
high recognition rate and low pose-error, i.e. high registration accuracy.
Sampling Approach Recognition Rate Pose-Error Average # of Measurements Average # of Rotations
Our approach 0.997 (0.966) 0.0541 (0.0627) 4.084 (8.524) 9.777 (26.552)
blind-0 0.987 (0.862) 0.0595 (0.1740) 5.354 (13.355) 16.214 (39.891)
blind-1 0.977 (0.794) 0.0706 (0.2549) 11.179 (27.894) 11.146 (27.941)
blind-2 0.698 (0.243) 0.2150 (0.8040) 15.468 (28.837) 30.079 (56.506)
heuristic-0 0.989 (0.891) 0.0651 (0.1525) 9.323 (24.026) 8.544 (23.429)
heuristic-1 0.994 (0.940) 0.0507 (0.0921) 3.199 (7.248) 11.539 (32.390)
heuristic-2 0.951 (0.640) 0.0644 (0.3861) 2.439 (4.577) 25.506 (65.097)
heuristic-3 0.639 (0.115) 0.2117 (0.9036) 1.713 (1.961) 54.447 (93.563)
ACKNOWLEDGEMENTS
This work was enabled by the Competence Cen-
ter VRVis. VRVis is funded by BMVIT, BMWFW,
Styria, SFG and Vienna Business Agency under the
scope of COMET - Competence Centers for Excel-
lent Technologies (854174) which is managed by
FFG. We acknowledge the support of the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) [516801].
REFERENCES
Arun Srivatsan, R., Zevallos, N., Vagdargi, P., and Choset,
H. (2019). Registration with a small number of sparse
measurements. The International Journal of Robotics
Research, page 0278364919842324.
Audibert, J.-Y., Munos, R., and Szepesv
´
ari, C. (2009).
Exploration–exploitation tradeoff using variance esti-
mates in multi-armed bandits. Theoretical Computer
Science, 410(19):1876–1902.
Ballard, D. H. (1981). Generalizing the hough trans-
form to detect arbitrary shapes. Pattern recognition,
13(2):111–122.
Br
´
egier, R., Devernay, F., Leyrit, L., and Crowley, J. L.
(2018). Defining the pose of any 3d rigid object and
an associated distance. International Journal of Com-
puter Vision, 126(6):571–596.
Chaplot, D. S., Parisotto, E., and Salakhutdinov, R.
(2018). Active neural localization. arXiv preprint
arXiv:1801.08214.
Fox, D., Burgard, W., and Thrun, S. (1998). Active markov
localization for mobile robots. Robotics and Au-
tonomous Systems, 25(3-4):195–207.
Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M.
(2003). Geometrically stable sampling for the icp al-
gorithm. In International Conference on 3-D Digital
Imaging and Modeling, 2003. 3DIM 2003. Proceed-
ings., pages 260–267. IEEE.
Gottipati, S. K., Seo, K., Bhatt, D., Mai, V., Murthy, K.,
and Paull, L. (2019). Deep active localization. IEEE
Robotics and Automation Letters, 4(4):4394–4401.
K
¨
ummerle, R., Triebel, R., Pfaff, P., and Burgard, W.
(2008). Monte carlo localization in outdoor ter-
rains using multilevel surface maps. Journal of Field
Robotics, 25(6-7):346–359.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,
Harley, T., Silver, D., and Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learn-
ing. In International conference on machine learning,
pages 1928–1937.
Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of
the icp algorithm. In International Conference on 3-
D Digital Imaging and Modeling, 2001. 3DIM 2001.
Proceedings., volume 1, pages 145–152.
Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. (2015). Trust region policy optimization. In
International conference on machine learning, pages
1889–1897.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. arXiv preprint arXiv:1707.06347.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. (2014). Striving for simplicity: The all con-
volutional net. arXiv preprint arXiv:1412.6806.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.
Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
robotics. MIT press.
Torsello, A., Rodola, E., and Albarelli, A. (2011). Sampling
relevant points for surface registration. In 2011 Inter-
national Conference on 3D Imaging, Modeling, Pro-
cessing, Visualization and Transmission, pages 290–
295. IEEE.
Wolter, J. D., Woo, T. C., and Volz, R. A. (1985). Optimal
algorithms for symmetry detection in two and three
dimensions. The Visual Computer, 1(1):37–48.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
846