gait parameters seem to be additionally useful for an
objective classification of transfemoral amputees.
The potential of the gait parameters contributing
to objective assessment has to be confirmed with fur-
ther investigations. Based on a larger sample size a
statistical analysis have to be performed in order to
make generalized statements and to develop an algo-
rithm to establish a decision support system for the
classification of patients with a transfemoral amputa-
tion in one of the three considered mobility grades.
Furthermore, it could be recommendable for fur-
ther studies to use the AMP tool additionally to the
determined mobility grade based on the profile survey
in order to have supplementary information.
ACKNOWLEDGEMENT
The authors are grateful for all subjects volunteering
to participate in this study. We also thank the German
Central Innovation Program SME (Zentrales Innova-
tionsprogramm Mittelstand - ZIM) for supporting the
project ‘‘Multifunctional diagnostic machine for pa-
tients of lower limb amputations” (ZF4096303TS6:
Multifunktionales Diagnostikgerät für Amputa-
tionspatentien) in which the diagnostic machine was
developed in cooperation with Guenther Bionics
GmbH and Peuker GmbH.
The authors wants to thank Hagen Theuer who
wrote his Bachelor Thesis in the course of the ZIM
project.
REFERENCES
Agrawal V, Gailey RS, O’Toole C, Gaunaurd I, Finnieston
A (2013). Influence of gait training and pros-thetic foot
category on external work symmetry during unilateral
transtibial amputee gait. Prosthetics and Orthotics In-
ternational, 37(5), 396–403. DOI: https://jour-
nals.sagepub.com/doi/10.1177/0309364612473501
Agrawal V, Gailey RS, Gaunaurd IA, O’Toole C, Fin-
nieston AA (2013). Comparison between micro-proces-
sorcontrolled ankle/foot and conventional prosthetic
feet during stair negotiation in people with unilateral
transtibial amputation. J Rehabil Res Dev. 2013; 50(7):
941–50. http://dx.doi.org/10.1682/JRRD.2012.05.0093
Balk EM, Gazula A, Markozannes G, et al. (2018). Lower
Limb Prostheses: Measurement Instruments, Compari-
son of Component Effects by Subgroups, and Long-
Term Outcomes [Internet]. Rockville (MD): Agency
for Healthcare Research and Quality (US); 2018 Sep.
(Comparative Effectiveness Review, No. 213.) Table 1,
Lower limb extremity prosthesis Medicare Functional
Classification Levels (K levels) Available from:
https://www.ncbi.nlm.nih.gov/
books/NBK531517/table/ch2.tab1/, (Online: 6.11.
2019)
Batten, H. R., McPhail, S. M., Mandrusiak, A. M., Var-
ghese, P. N., & Kuys, S. S. (2019). Gait speed as an
indicator of prosthetic walking potential following
lower limb amputation. Prosthetics and Orthotics Inter-
national, 43(2), 196–203. DOI: https://doi.org/
10.1177/0309364618792723
Darter BJ, Wilken JM (2011). Gait training with virtual re-
ality-based real-time feedback: improving gait perfor-
mance following transfemoral amputation. Phys Ther.
2011; 91(9): 1385–94. DOI: https://doi.org/
10.2522/ptj.20100360 PMID: 21757579
Dudek NL, Khan OD, Lemaire ED, Marks MB, Saville L
(2008). Ambulation monitoring of transtibial amputa-
tion subjects with patient activity monitor versus pe-
dometer. Journal of Rehabilitation Research & Devel-
opment 2008; 45 (4): 577–586.
Gailey R, Roach K, Applegate B, Nash M (2002). The Am-
putee Mobility Predictor (AMP): an instrument to as-
sess determinants of the lower limb amputee’s ability to
ambulate. Arch Phys Med Rehab 2002; 83: 613–627.
MDS Essen (ed.) (2008). Profilerhebungsbogen für die
Versorgung mit Beinprothesen. URL: https://www.
gkv-spitzen-ver-band.de/media/dokumente/krankenver
sicherung_1/hilfsmittel/fortschreibungen_aktuell/aelter
e/HiMi_Fortschr_Profilerhebungsbogen_Produktgrup
pe_24_2008.pdf, (Online: 18.11.2019).
Gailey RS (2006). Predictive Outcome Measures Versus
Functional Outcome Measures in the Lower Limb Am-
putee. American Academy of Orthotists and Prosthe-
tists. 2006; (6): 51-60.
Orlowski K, Loose H, Eckardt F, Edelmann-Nusser J, Witte
K (2015). Analyzing the Transfemoral Am-putee Gait
Using Inertial Sensors - Identifying Gait Parameters for
Investigating the Symmetry of Gait - A Pilot Study. In-
ternational Conference on Bio-inspired Systems and
Signal Processing (BIOSIGNALS), Lisbon, Portugal,
12.-15. January 2015.
Orlowski K, Loose H, Eckardt F, Edelmann-Nusser J, Witte
K (2016). Evaluation of gait parameters determined by
InvestiGAIT against a reference system. International
Conference on Bio-inspired Systems and Signal Pro-
cessing (BIOSIGNALS), Rome, Italy, February 2016.
Orlowski K, Eckardt F, Herold F, Aye N, Edelmann-
Nusser, J, Witte K (2017). Examination of the reli-abil-
ity of an inertial sensor-based gait analysis system. Bi-
omed. Eng.-Biomed. Tech. 2017; DOI 10.1515/bmt-
2016-0067.
Oude Lansink ILB, van Kouwenhove L, Dijkstra PU,
Postema K, Hijmans JM (2017). Effects of inter-ven-
tions on normalizing step width during self-paced dual-
belt treadmill walking with virtual reality, a randomized
controlled trial. Gait & posture. 2017; 58: 121–5.
Stephen P, Aitken R (1987). Morbidity survey of lower
limb amputees. Clin Rehabil 1987;1:181–186.
Theeven PJR, Hemmen B, Brink PRG, Smeets RJEM,
Seelen HEM (2013). Measures and procedures utilized