mesostructure normals with a point light or without
any light condition are possible areas of future work.
6 CONCLUSIONS
We have presented a normal map acquisition method
primarily designed for mesoscale cylindric objects us-
ing a single input image. We have discovered that
mesoscale geometry can provide local intensity statis-
tics to solve practical issues in the existing shape-
from-intensity approach. We showed that the rela-
tion of the local height and unit-variance intensity un-
der diffuse illumination of the light stage. We cal-
culated the normal maps from the local unit-variance
values and the detected cylindric orientations from
a single image. We validated that our method con-
sistently outperforms existing methods for capturing
high-frequency details of the surface orientation of
both specular and diffuse objects in the real world.
ACKNOWLEDGEMENTS
Min H. Kim acknowledges Korea NRF grants
(2019R1A2C3007229, 2013M3A6A6073718) and
Cross-Ministry Giga KOREA Project (GK17P0200).
REFERENCES
Aittala, M., Aila, T., and Lehtinen, J. (2016). Reflectance
modeling by neural texture synthesis. ACM Trans.
Graph., 35(4):65.
Barron, J. T. and Malik, J. (2015). Shape, illumination, and
reflectance from shading. IEEE TPAMI, 37(8):1670–
1687.
Barsky, S. and Petrou, M. (2003). The 4-source photometric
stereo technique for three-dimensional surfaces in the
presence of highlights and shadows. IEEE TPAMI,
25(10):1239–1252.
Beeler, T., Bickel, B., Beardsley, P., Sumner, B., and Gross,
M. (2010). High-quality single-shot capture of facial
geometry. In ACM Trans. Graph., volume 29, page 40.
Chen, T., Goesele, M., and Seidel, H.-P. (2006). Mesostruc-
ture from specularity. In Proc. IEEE CVPR 2006, vol-
ume 2, pages 1825–1832.
Deschaintre, V., Aittala, M., Durand, F., Drettakis, G., and
Bousseau, A. (2018). Single-image svbrdf capture
with a rendering-aware deep network. ACM Trans.
Graph., 37(4):128.
Dong, Y., Tong, X., Pellacini, F., and Guo, B. (2011). App-
gen: interactive material modeling from a single im-
age. In ACM Trans. Graph., volume 30, page 146.
Glencross, M., Ward, G. J., Melendez, F., Jay, C., Liu, J.,
and Hubbold, R. (2008). A perceptually validated
model for surface depth hallucination. In ACM Trans.
Graph., volume 27, page 59.
Jakob, W., Moon, J. T., and Marschner, S. (2009). Capturing
hair assemblies fiber by fiber. In ACM Transactions on
Graphics (TOG), volume 28, page 164. ACM.
Langer, M. S. and B
¨
ulthoff, H. H. (2000). Depth discrimina-
tion from shading under diffuse lighting. Perception,
29(6):649–660.
Li, X., Dong, Y., Peers, P., and Tong, X. (2017). Model-
ing surface appearance from a single photograph using
self-augmented convolutional neural networks. ACM
Trans. Graph., 36(4):45.
Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., and Chan-
draker, M. (2018). Learning to reconstruct shape
and spatially-varying reflectance from a single image.
ACM Trans. Graph., page 269.
Lindeberg, T. (1998). Feature detection with automatic
scale selection. IJCV, 30(2):79–116.
Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss,
M., and Debevec, P. (2007). Rapid acquisition of spec-
ular and diffuse normal maps from polarized spherical
gradient illumination. In Eurographics, page 183.
Mallick, S. P., Zickler, T. E., Kriegman, D. J., and Bel-
humeur, P. N. (2005). Beyond lambert: Reconstruct-
ing specular surfaces using color. In Proc. IEEE
CVPR 2005, volume 2, pages 619–626. Ieee.
Nam, G., Wu, C., Kim, M. H., and Sheikh, Y. (2019).
Strand-accurate multi-view hair capture. In Proc.
IEEE CVPR 2019, pages 155–164.
Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi,
R. (2005). Efficiently combining positions and nor-
mals for precise 3d geometry. ACM Trans. Graph.,
24(3):536–543.
Oren, M. and Nayar, S. K. (1997). A theory of specular
surface geometry. IJCV, 24(2):105–124.
Paris, S., Brice
˜
no, H. M., and Sillion, F. X. (2004). Cap-
ture of hair geometry from multiple images. In ACM
Trans. Graph., volume 23, pages 712–719. ACM.
Sanderson, A. C., Weiss, L. E., and Nayar, S. K. (1988).
Structured highlight inspection of specular surfaces.
IEEE TPAMI, 10(1):44–55.
Walter, B., Marschner, S. R., Li, H., and Torrance, K. E.
(2007). Microfacet models for refraction through
rough surfaces. In Eurographics, pages 195–206.
Woodham, R. J. (1980). Photometric method for determin-
ing surface orientation from multiple images. Optical
engineering, 19(1):191139.
Ye, W., Li, X., Dong, Y., Peers, P., and Tong, X. (2018).
Single image surface appearance modeling with self-
augmented cnns and inexact supervision. In Computer
Graphics Forum, volume 37, pages 201–211.
VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications
568