particular AP1 and ECG1 were used for prediction of
AP2. At the same time validation was performed on
data of AP2 and ECG2 for prediction of AP3.
Results of such alternative approach are presented
on Figures 5 and 6, and on Tables 3 and 4.
Figure 4: Genetic Programming Results for APD.
It can be seen that alternative approach can
significantly improve results. It can be concluded that
task of predicting AP by means of only HRV features
can be too ambitious. At the same time the proposed
approach can be used to evaluate change in AP after
a certain time, when the original “calibration” value
is known.
It was noted that the best result was obtained for
the linear regression (polynomial of 1
st
degree). Best
combinations consist of around 20 features. Which
coupled with 1 degree lessen overtraining.
The results, presented in current work are
comparable with ones obtained using Pulsation Wave
propagation time (Anisimov et al., 2014). In that work
authors reported that for a 1/3 of validation set error
was less than 1 mmHg, average error was 9%.
Figure 5: Alternative Genetic Programming Results for
APS.
Table 3: Alternative Errors for APS.
median max min std
test 2.65% 10.07% 0.06% 2.58%
validate 4.04% 13.77% 0.00% 3.62%
Table 4: Alternative Errors for APD.
median max min std
test 4.72% 13.12% 0.05% 3.46%
validate 5.91% 21.38% 0.00% 4.84%
Results of the current work are also comparable
with results application of genetic algorithms for
symbolic regression (Dolganov, 2019). Although
additional comparison is required.
3,34 3,34 3,26 3,26 3,23 3,15 3,01 2,95 2,86 2,74
3,48 3,38 3,27 3,14 3,03 3,03 3,03 3,03 2,92 2,88
3,46 3,24 3,21 3,21 3,18 3,09 3,09 3,09 3,08 3,08
3,50 3,41 3,14 3,14 3,14 3,12 2,90 2,90 2,89 2,87
3,37 3,37 3,29 3,26 3,18 3,18 3,00 2,92 2,92 2,92
3,43 3,24 3,24 3,05 3,05 3,05 3,05 3,05 3,00 3,00
3,42 3,38 3,27 3,27 3,15 2,92 2,92 2,92 2,92 2,92
3,35 3,23 3,13 3,07 2,97 2,92 2,84 2,84 2,84 2,82
3,42 3,29 3,25 3,17 3,10 3,10 3,10 3,10 3,10 3,10
3,30 3,09 3,05 2,91 2,77 2,55 2,55 2,54 2,48 2,48
3,34 3,17 3,16 3,11 3,03 3,03 2,99 2,95 2,86 2,83
3,42 3,32 3,23 3,16 3,14 3,05 3,04 2,99 2,98 2,74
3,30 3,16 3,16 3,16 3,07 3,05 3,05 2,93 2,93 2,93
3,21 3,21 3,21 3,21 3,20 3,19 3,13 3,02 2,90 2,90
3,44 3,34 3,27 3,27 3,13 3,07 3,04 3,04 3,04 2,93
3,44 3,23 3,21 2,75 2,64 2,56 2,53 2,53 2,50 2,50
3,46 3,23 3,07 3,07 3,06 2,96 2,96 2,96 2,92 2,92
3,35 3,26 3,26 2,98 2,98 2,98 2,86 2,82 2,81 2,77
3,43 3,22 3,22 3,21 3,02 2,97 2,97 2,70 2,70 2,70
3,29 3,26 3,20 3,16 3,16 3,14 3,13 3,13 3,07 3,07
3,33 3,22 3,22 3,14 3,14 3,03 3,03 3,01 2,94 2,94
3,37 3,26 3,17 3,10 2,92 2,92 2,72 2,72 2,72 2,71
3,36 3,28 3,18 3,12 3,06 3,03 3,03 3,03 3,02 2,96
3,43 3,33 3,33 3,27 3,27 3,20 3,20 3,17 3,11 3,11
3,33 3,07 3,06 2,86 2,81 2,81 2,81 2,81 2,81 2,81
1,16 1,10 1,09 1,05 1,05 1,05 1,05 1,05 1,05 1,05
1,21 1,15 1,13 1,08 1,07 1,05 1,05 1,05 1,04 1,04
1,17 1,12 1,11 1,10 1,05 1,05 1,05 1,05 1,04 1,03
1,21 1,18 1,16 1,14 1,12 1,12 1,12 1,09 1,09 1,05
1,15 1,14 1,11 1,11 1,11 1,08 1,06 1,05 1,03 1,03
1,19 1,18 1,15 1,15 1,15 1,10 1,10 1,10 1,08 1,07
1,12 1,07 1,05 1,02 1,01 1,01 1,01 1,01 1,01 0,99
1,18 1,17 1,16 1,10 1,10 1,10 1,10 1,10 1,08 1,08
1,18 1,16 1,15 1,09 1,07 1,05 1,05 1,05 1,05 1,05
1,19 1,14 1,09 1,08 1,06 1,06 1,06 1,06 1,06 1,03
1,19 1,15 1,11 1,07 1,07 1,06 1,06 1,02 1,02 1,01
1,19 1,16 1,16 1,14 1,12 1,12 1,12 1,10 1,10 1,06
1,20 1,16 1,12 1,12 1,11 1,07 1,07 1,06 1,04 1,04
1,21 1,17 1,13 1,13 1,12 1,12 1,07 1,05 1,05 1,05
1,14 1,10 1,09 1,07 1,07 1,04 1,03 1,01 1,00 1,00
1,22 1,18 1,15 1,11 1,11 1,09 1,06 1,05 1,04 1,02
1,18 1,17 1,13 1,05 1,02 1,00 1,00 0,98 0,98 0,98
1,19 1,13 1,12 1,12 1,03 1,03 1,03 1,03 1,03 1,03
1,20 1,17 1,14 1,11 1,08 1,07 1,06 1,06 1,04 1,04
1,18 1,13 1,10 1,09 1,08 1,08 1,07 1,07 1,02 1,01
1,18 1,15 1,12 1,04 1,02 1,02 1,02 1,02 1,02 1,02
1,19 1,14 1,12 1,12 1,10 1,09 1,08 1,08 1,07 1,02
1,13 1,01 1,01 1,00 1,00 0,99 0,99 0,99 0,99 0,96
1,17 1,15 1,11 1,11 1,09 1,07 1,07 1,07 1,07 1,06
1,23 1,22 1,16 1,12 1,11 1,09 1,04 1,03 1,03 1,03