Figure 6: Acoustic response of the portal vein with
microbubble placed at the centre, due to an ambient
pressure raise of 0 mmHg (blue curves) and 10 mmHg
(orange curves), (a) radial oscillation of the microbubble,
(b) scattered wave and (c) Power spectrum of acoustic
response.
4 CONCLUSIONS
The finite element model has been developed that can
allow to study the relationship between the
subharmonic response from microbubble and
ambient pressure, which may be used to estimate the
portal pressure non-invasively. It can be observed
from the results that as the portal pressure is changed,
the change at the subharmonic component is more
compared to that at the fundamental component.
REFERENCES
Adam, D., Sapunar, M., & Burla, E. (2005). On the
relationship between encapsulated ultrasound contrast
agent and pressure. Ultrasound in medicine &
biology, 31(5), 673-686.
Andersen, K. S., & Jensen, J. A. (2009). Ambient pressure
sensitivity of microbubbles investigated through a
parameter study. The Journal of the Acoustical Society
of America, 126(6), 3350-3358.
Andersen, K. S., & Jensen, J. A. (2010). Impact of acoustic
pressure on ambient pressure estimation using
ultrasound contrast agent. Ultrasonics, 50(2), 294-299.
Bei, H., Hai-Rong, Z., & Dong, Z. (2010). Asymmetric
oscillation and acoustic response from an encapsulated
microbubble bound within a small vessel. Chinese
Physics Letters, 27(6), 064302.
Berzigotti, A., & Bosch, J. (2018). Hepatic Venous Pressure
Measurement and Other Diagnostic Hepatic
Hemodynamic Techniques. In Diagnostic Methods for
Cirrhosis and Portal Hypertension (pp. 33-48).
Springer, Cham.
Cai, C. L., Yu, J., Tu, J., Guo, X. S., Huang, P. T., & Zhang,
D. (2018). Interaction between encapsulated
microbubbles: A finite element modelling
study. Chinese Physics B, 27(8), 084302.
Cokkinos, D. D., & Dourakis, S. P. (2009).
Ultrasonographic assessment of cirrhosis and portal
hypertension. Current Medical Imaging Reviews, 5(1),
62-70.
Dave, J. K., Halldorsdottir, V. G., Eisenbrey, J. R., Liu, J.
B., McDonald, M. E., Dickie, K., ... & Forsberg, F.
(2011). Noninvasive estimation of dynamic pressures in
vitro and in vivo using the subharmonic response from
microbubbles. IEEE transactions on ultrasonics,
ferroelectrics, and frequency control, 58(10), 2056-
2066.
Dave, J. K., Halldorsdottir, V. G., Eisenbrey, J. R., Merton,
D. A., Liu, J. B., Zhou, J. H., ... & Lin, F. (2012).
Investigating the efficacy of subharmonic aided
pressure estimation for portal vein pressures and portal
hypertension monitoring. Ultrasound in medicine &
biology, 38(10), 1784-1798.
Dave, J. K., Halldorsdottir, V. G., Eisenbrey, J. R.,
Raichlen, J. S., Liu, J. B., McDonald, M. E., ... &
Forsberg, F. (2012). Subharmonic microbubble
emissions for noninvasively tracking right ventricular
pressures. American Journal of Physiology-Heart and
Circulatory Physiology, 303(1), H126-H132.
Dave, J. K., Halldorsdottir, V. G., Eisenbrey, J. R.,
Raichlen, J. S., Liu, J. B., McDonald, M. E., ... &
Forsberg, F. (2012). Noninvasive LV pressure
estimation using subharmonic emissions from
microbubbles. JACC: Cardiovascular Imaging, 5(1),
87-92.
Faez, T., Emmer, M., Kooiman, K., Versluis, M., van der
Steen, A. F., & de Jong, N. (2012). 20 years of
ultrasound contrast agent modeling. IEEE transactions
on ultrasonics, ferroelectrics, and frequency
control, 60(1), 7-20.