increasing understanding of metabolic logistics
within an evolved bacterial community we are aiming
to constantly refine our methods. However, it is time
to learn principles of a microbiome adaptive
evolution and the criteria and contrasts that we can
use in the analysis, now and in the future.
4 CONCLUSIONS
We have shown that our computational pipeline and
ASAR package could be successfully used in practical
applications. We have analysed electrogenic and
human microbial communities and produced novel
data used for the software validation and prove of its
capabilities. Original hypothesis were also generated
which require further experimental confirmation.
ACKNOWLEDGEMENTS
We thank OIST support of the research. In particular
OIST Biological Systems Unit members for
providing metagenome sequencing and explanation
of experimental setup.
REFERENCES
Anderson, M. J. 2001. A new method for non-parametric
multivariate analysis of variance. Austral Ecology, 26:
32–46
Gajda, I., Greenman, J., Ieropoulos, I.A., 2018. Recent
advancements in real-world microbial fuel cell
applications. Curr Opin Electrochem, 11:78-83,
doi:10.1016/j.coelec.2018.09.006
Georg, S., de Eguren Cordoba, I., Sleutels. T., Kuntkea, P.,
terHeijneb, A., Buismanab, C. J. N., 2019. Competition
of electrogens with methanogens for hydrogen in
bioanodes. Water Research, 170:115292, doi:
10.1016/j.watres.2019.115292.
Ieropoulos, I., Pasternak, G., Greenman, J., 2017. Urine
disinfection and in situ pathogen killing using a
microbial fuel cell cascade system. PLoS One, 12:1
Kanehisa, M. and Goto, S., 2000. KEGG: Kyoto
Encyclopedia of Genes and Genomes. Nucleic Acids
Res, 28:27-30
Kassongo, J., Togo, C. A., 2011. Performance improvement
of whey-driven microbial fuel cells by acclimation of
indigenous anodophilic microbes. Afr J Biotechnol,
10:7846–7852
Kaur, A., Boghani, H. C., Michie, I., Dinsdale, R. M.,
Guwy, A. J., Premier, G. C., 2014. Inhibition of
methane production in microbial fuel cells: operating
strategies which select electrogens over methanogens.
Bioresource Technology, 173:75-81, doi:
10.1016/j.biortech.2014.09.091
Kiseleva, I., Garushyants, S.K., Ma, H., Simpson, D.J.W.,
Fedorovich, V., Goryanin, I., 2015. Taxonomic and
functional metagenomic analysis of anodic
communities in two pilot-scale microbial fuel cells
treating different industrial wastewaters. J Integr
Bioinform, 12(3):273
Kiseleva, L., Garushyants, S. K., Briliute, J., Simpson,
D.J.W., Cohen, M.F., Goryanin, I., 2015. Genome
sequence of the electrogenic petroleum-degrading
Thalassospira sp. strain HJ Genome Announc. 3 (3),
e00483-15
Menzel, P., Ng, K. L., Krogh, A., 2016. Fast and sensitive
taxonomic classification for metagenomics with Kaiju.
Nature Communications, 7: 11257
Nevin, K. P., Richter, H., Covalla, S. F., Johnson, J. P.,
Woodard, T. L., Orloff, A. L., Jia, H., Zhang, M.,
Lovley, D. R., 2008. Power output and columbic
efficiencies from biofilms of Geobacter sulfurreducens
comparable to mixed community microbial fuel cells.
Environ Microbiol, 10:2505–2514, doi:10.1111/j.1462-
2920.2008.01675.x.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., 2018.
Vegan: Community Ecology Package. R package, 2:4–6
Orakov, A., Sakenova, N., Goryanin, I., Sorokin A., 2018.
ASAR Database: An R Tool for Visual Analysis and
Storage of Metagenomes in Proceedings of the 11th
International Joint Conference on Biomedical
Engineering Systems and Technologies - Volume 4.
Bioinformatics, 196-200
Orakov, A. N., Sakenova, N. K., Sorokin, A., Goryanin, I.
I., 2017. ASAR: visual analysis of metagenomes in R.
Bioinformatics, 34 (8): 1404-1405
Overbeek, R., Begley, T., Butler, R. M., et al., 2005. The
subsystems approach to genome annotation and its use
in the project to annotate 1000 genomes. Nucleic Acids
Res. 33(17):5691–5702, doi:10.1093/nar/gki866
Szydlowski, L., Sorokin, Vasieva, O., Fedorovich, V.,
Goryanin, I., 2019. Evolutionary dynamics of microbial
communities in bioelectrochemical systems. bioRxiv,
725580
Szydlowsky, L., et al, Goryanin, I., 2020. Novel strain of
Arcobacter isolation and metabolic engineering
(submitted, Metabolic Engineering)
Van den Boogaart, K., Tolosana, R. and Bren, M., 2016.
Compositions: Compositional data analysis r-pack,
http://sp.lyellcollection.org/ Vasieva, O., Sorokin, A.,
Szydlowski, L. and Goryanin, I., 2019. Do Microbial
Fuel Cells have Antipathogenic Properties? J Comput Sci
Syst Biol, 12:3, doi:10.4172/0974-7230.1000301 (a)
Vasieva, O., Goryanin, I., 2019. Is there a function for a sex
pheromone precursor? Journal of Integrative
Bioinformatics, 16(4): 20190016, https://doi.org/10.
1515/jib-2019-0016 (b)
Vasieva, O., Sorokin, A., Murzabaev, M., Babiak, P.,
Goryanin, I., 2019. Study on analysis of personal gut
microbiome. Comput Sci Syst Biol, 12(3):71-79 (.c)