Chen, B.-C. and Kae, A. (2019). Toward realistic image
compositing with adversarial learning. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8415–8424.
Dolhasz, A., Harvey, C., and Williams, I. (2019). Learning
to observe: Approximating human perceptual thresh-
olds for detection of suprathreshold image transforma-
tions. arXiv preprint arXiv:1912.06433.
Dolhasz, A., Williams, I., and Frutos-Pascual, M. (2016).
Measuring observer response to object-scene dispar-
ity in composites. In 2016 IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR-
Adjunct), pages 13–18. IEEE.
Eigen, D. and Fergus, R. (2015). Predicting depth, surface
normals and semantic labels with a common multi-
scale convolutional architecture. In Proceedings of
the IEEE international conference on computer vi-
sion, pages 2650–2658.
Evgeniou, T. and Pontil, M. (2004). Regularized multi–task
learning. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 109–117. ACM.
Gardner, M.-A., Sunkavalli, K., Yumer, E., Shen, X., Gam-
baretto, E., Gagn
´
e, C., and Lalonde, J.-F. (2017).
Learning to predict indoor illumination from a single
image. arXiv preprint arXiv:1704.00090.
Guillemot, C. and Le Meur, O. (2013). Image inpainting:
Overview and recent advances. IEEE signal process-
ing magazine, 31(1):127–144.
Kang, L., Ye, P., Li, Y., and Doermann, D. (2015). Si-
multaneous estimation of image quality and distortion
via multi-task convolutional neural networks. In 2015
IEEE international conference on image processing
(ICIP), pages 2791–2795. IEEE.
Lalonde, J.-F. and Efros, A. A. (2007). Using color compat-
ibility for assessing image realism. In 2007 IEEE 11th
International Conference on Computer Vision, pages
1–8. IEEE.
Levin, A., Lischinski, D., and Weiss, Y. (2004). Col-
orization using optimization. In ACM transactions on
graphics (tog), volume 23, pages 689–694. ACM.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
P
´
erez, P., Gangnet, M., and Blake, A. (2003). Poisson im-
age editing. ACM Transactions on graphics (TOG),
22(3):313–318.
Porter, T. and Duff, T. (1984). Compositing digital images.
In ACM Siggraph Computer Graphics, volume 18,
pages 253–259. ACM.
Ranjan, R., Patel, V. M., and Chellappa, R. (2017). Hy-
perface: A deep multi-task learning framework for
face detection, landmark localization, pose estimation,
and gender recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(1):121–135.
Reinhard, E., Adhikhmin, M., Gooch, B., and Shirley, P.
(2001). Color transfer between images. IEEE Com-
puter graphics and applications, 21(5):34–41.
Ruder, S. (2017). An overview of multi-task learn-
ing in deep neural networks. arXiv preprint
arXiv:1706.05098.
Shi, W., Loy, C. C., and Tang, X. (2016). Deep specialized
network for illuminant estimation. In European Con-
ference on Computer Vision, pages 371–387. Springer.
Sunkavalli, K., Johnson, M. K., Matusik, W., and Pfister,
H. (2010). Multi-scale image harmonization. ACM
Transactions on Graphics (TOG), 29(4):125.
Tsai, Y.-H., Shen, X., Lin, Z., Sunkavalli, K., Lu, X., and
Yang, M.-H. (2017). Deep image harmonization. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3789–3797.
Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-
A. (2008). Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th international conference on Machine learning,
pages 1096–1103. ACM.
Wright, S. (2013). Digital compositing for film and video.
Routledge.
Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. (2018). The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR.
Zhang, Z., Luo, P., Loy, C. C., and Tang, X. (2014). Facial
landmark detection by deep multi-task learning. In
European conference on computer vision, pages 94–
108. Springer.
Towards Unsupervised Image Harmonisation
581