Carod-Artal, J., Egido, J. A., Gonz´alez, J. L., and Varela de
Seijas, E. (2000). Quality of life among stroke sur-
vivors evaluated 1 year after stroke: experience of a
stroke unit. Stroke, 31(12):2995–3000.
Chi, C.-L., Zeng, W., Oh, W., Borson, S., Lenskaia, T.,
Shen, X., and Tonellato, P. J. (2017). Personalized
long-term prediction of cognitive function: Using se-
quential assessments to improve model performance.
Journal of biomedical informatics, 76:78–86.
Cicerone, K. D., Dahlberg, C., Kalmar, K., Langenbahn,
D. M., Malec, J. F., Bergquist, T. F., Felicetti, T., Gi-
acino, J. T., Harley, J. P., Harrington, D. E., et al.
(2000). Evidence-based cognitive rehabilitation: rec-
ommendations for clinical practice. Archives of phys-
ical medicine and rehabilitation, 81(12):1596–1615.
Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn,
D. M., Felicetti, T., Kneipp, S., Ellmo, W., Kalmar, K.,
Giacino, J. T., Harley, J. P., et al. (2005). Evidence-
based cognitive rehabilitation: updated review of the
literature from 1998 through 2002. Archives of physi-
cal medicine and rehabilitation, 86(8):1681–1692.
Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec,
J. F., Kalmar, K., Fraas, M., Felicetti, T., Laatsch, L.,
Harley, J. P., Bergquist, T., et al. (2011). Evidence-
based cognitive rehabilitation: updated review of the
literature from 2003 through 2008. Archives of physi-
cal medicine and rehabilitation, 92(4):519–530.
Cumming, T. B., Marshall, R. S., and Lazar, R. M. (2013).
Stroke, cognitive deficits, and rehabilitation: still an
incomplete picture. International Journal of stroke,
8(1):38–45.
Delgrande, J. and Wassermann, R. (2010). Horn clause
contraction functions: Belief set and belief base ap-
proaches. In Twelfth International Conference on the
Principles of Knowledge Representation and Reason-
ing.
Delgrande, J. P. (2008). Horn clause belief change: Con-
traction functions. In KR, pages 156–165.
Delgrande, J. P. and Schaub, T. (2003). A consistency-
based approach for belief change. Artificial Intelli-
gence, 151(1-2):1–41.
Faria, A. L. and Berm´udez i Badia, S. (2015). Development
and evaluation of a web-based cognitive task gener-
ator for personalized cognitive training: a proof of
concept study with stroke patients. In Proceedings
of the 3rd 2015 Workshop on ICTs for improving Pa-
tients Rehabilitation Research Techniques, pages 1–4.
ACM.
Faria, A. L., Pinho, M. S., and Berm´udez i Badia, S. (2018).
Capturing expert knowledge for the personalization
of cognitive rehabilitation: Study combining com-
putational modeling and a participatory design strat-
egy. JMIR rehabilitation and assistive technologies,
5(2):e10714.
Ferm´e, E. and Hansson, S. O. (2011). Agm 25 years. Jour-
nal of Philosophical Logic, 40(2):295–331.
Ferm´e, E. and Hansson, S. O. (2018). Belief Change: In-
troduction and Overview. Springer.
Fern´andez-Delgado, M., Cernadas, E., Barro, S., and
Amorim, D. (2014). Do we need hundreds of classi-
fiers to solve real world classification problems? The
Journal of Machine Learning Research, 15(1):3133–
3181.
Fern´andez-Delgado, M., Sirsat, M., Cernadas, E., Alawadi,
S., Barro, S., and Febrero-Bande, M. (2018). An
extensive experimental survey of regression methods.
Neural Networks.
Freitas, S., Batista, S., Afonso, A. C., Sim˜oes, M. R.,
de Sousa, L., Cunha, L., and Santana, I. (2018). The
montreal cognitive assessment (moca) as a screening
test for cognitive dysfunction in multiple sclerosis.
Applied Neuropsychology: Adult, 25(1):57–70.
Freitas, S., Prieto, G., Sim˜oes, M. R., and Santana, I.
(2014). Psychometric properties of the montreal cog-
nitive assessment (moca): an analysis using the rasch
model. The Clinical Neuropsychologist, 28(1):65–83.
Freitas, S., Prieto, G., Sim˜oes, M. R., and Santana, I.
(2015). Scaling cognitive domains of the montreal
cognitive assessment: an analysis using the partial
credit model. Archives of Clinical Neuropsychology,
30(5):435–447.
Freitas, S., Sim˜oes, M. R., Alves, L., Duro, D., and Santana,
I. (2012a). Montreal cognitive assessment (moca):
validation study for frontotemporal dementia. Journal
of Geriatric Psychiatry and Neurology, 25(3):146–
154.
Freitas, S., Sim˜oes, M. R., Alves, L., and Santana, I. (2011).
Montreal cognitive assessment (moca): normative
study for the portuguese population. Journal of clin-
ical and experimental neuropsychology, 33(9):989–
996.
Freitas, S., Sim˜oes, M. R., Alves, L., and Santana, I.
(2013). Montreal cognitive assessment: validation
study for mild cognitive impairment and alzheimer
disease. Alzheimer Disease & Associated Disorders,
27(1):37–43.
Freitas, S., Simoes, M. R., Alves, L., Vicente, M., and
Santana, I. (2012b). Montreal cognitive assessment
(moca): validation study for vascular dementia. Jour-
nal of the International Neuropsychological Society,
18(6):1031–1040.
Freitas, S., Simoes, M. R., Marˆoco, J., Alves, L., and San-
tana, I. (2012c). Construct validity of the montreal
cognitive assessment (moca). Journal of the Interna-
tional Neuropsychological Society, 18(2):242–250.
George, D. R. and Whitehouse, P. J. (2011). Marketplace of
memory: what the brain fitness technology industry
says about us and how we can do better. The Geron-
tologist, 51(5):590–596.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The el-
ements of statistical learning: data mining, inference,
and prediction. Springer Science & Business Media.
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang,
Y., Dong, Q., Shen, H., and Wang, Y. (2017). Arti-
ficial intelligence in healthcare: past, present and fu-
ture. Stroke and vascular neurology, 2(4):230–243.
Katsuno, H. and Mendelzon, A. O. (1991). Propositional
knowledge base revision and minimal change. Artifi-
cial Intelligence, 52(3):263–294.