We remark there are many contemporary
advanced classifiers that can be used in order to map
the features to the response, such as RF and Support
Vector Machines (SVM). Here, in order to map the
selected features to the response we only used RF and
have not explored competing approaches (e.g. SVM)
to optimize the classification performance further.
We envisage that a larger sample size may lead to
a better and more generalizable model that may be
more accurate in correctly assessing postpartum
depression risk. Future work could potentially
incorporate additional statistical machine learning
algorithms which may improve prediction accuracy.
REFERENCES
APA (2013) DSM-V-The Diagnostic and Statistical
Manual of Mental Disorders.
Bellman, R. (1966) ‘Dynamic programming.’, Science
(New York, N.Y.). American Association for the
Advancement of Science, 153(3731), pp. 34–7. doi:
10.1126/science.153.3731.34.
Breiman, L. (2001) ‘Random Forests’, Machine Learning.
Kluwer Academic Publishers, 45(1), pp. 5–32. doi:
10.1023/A:1010933404324.
Cohen, J. et al. (2002) Applied Multiple Regression/
Correlation Analysis for the Behavioral Sciences Third
Edition. Available at: https://www.gbv.de/dms/
ilmenau/toc/348809573.PDF (Accessed: 28 June
2019).
Committee on Obstetric Practice (2015) ‘The American
College of Obstetricians and Gynecologists Committee
Opinion no. 630. Screening for perinatal depression.’,
Obstetrics and gynecology, 125(5), pp. 1268–71. doi:
10.1097/01.AOG.0000465192.34779.dc.
Cox, J. L., Holden, J. M. and Sagovsky, R. (1987)
‘Detection of Postnatal Depression’, British Journal of
Psychiatry. Cambridge University Press, 150(06), pp.
782–786. doi: 10.1192/bjp.150.6.782.
Ghaedrahmati, M. et al. (2017) ‘Postpartum depression risk
factors: A narrative review.’, Journal of education and
health promotion. Wolters Kluwer -- Medknow
Publications, 6, p. 60. doi: 10.4103/jehp.jehp_9_16.
Gibson, J. et al. (2009) ‘A systematic review of studies
validating the Edinburgh Postnatal Depression Scale in
antepartum and postpartum women’, Acta Psychiatrica
Scandinavica. John Wiley & Sons, Ltd (10.1111),
119(5), pp. 350–364. doi: 10.1111/j.1600-
0447.2009.01363.x.
Guyon, I. and Elisseeff, A. (2003) An Introduction to
Variable and Feature Selection, Journal of Machine
Learning Research. Available at:
http://jmlr.csail.mit.edu/papers/volume3/guyon03a/gu
yon03a.pdf (Accessed: 29 June 2019).
Hastie, T., Tibshirani, R. and Friedman, J. (2009) The
Elements of Statistical Learning Data Mining,
Inference, and Prediction. 2nd edn. Springer New
York.
Howard, L. M. et al. (2014) ‘Non-psychotic mental
disorders in the perinatal period.’, Lancet (London,
England), 384(9956), pp. 1775–88. doi: 10.1016/S01
40-6736(14)61276-9.
James, G. et al. (2013) An Introduction to Statistical
Learning with Applications in R.
Kononenko, I. (1994) ‘Estimating attributes: Analysis and
extensions of RELIEF’, in. Springer, Berlin, Heidelberg,
pp. 171–182. doi: 10.1007/3-540-57868-4_57.
Kursa, M. B. and Rudnicki, W. R. (2010) ‘Feature Selection
with the Boruta Package’, Journal of Statistical
Software, 36(11), pp. 1–13. doi: 10.18637/jss.v036.i11.
Letourneau, N.
et al. (2019) ‘Maternal and paternal
perinatal depressive symptoms associate with 2- and 3-
year-old children’s behaviour: findings from the
APrON longitudinal study’, BMC Pediatrics, 19(1), p.
435. doi: 10.1186/s12887-019-1775-1.
Mann, H. B. and Whitney, D. R. (1947) ‘On a Test of
Whether one of Two Random Variables is
Stochastically Larger than the Other’, The Annals of
Mathematical Statistics. Institute of Mathematical
Statistics, 18(1), pp. 50–60. doi: 10.1214/aoms/117773
0491.
Martini, J. et al. (2019) ‘Predictors and outcomes of suicidal
ideation during peripartum period.’, Journal of affective
disorders, 257, pp. 518–526. doi: 10.1016/j.jad.2019.
07.040.
Meyer, G. J. et al. (2001) ‘Psychological testing and
psychological assessment. A review of evidence and
issues.’, The American psychologist, 56(2), pp. 128–65.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/
11279806 (Accessed: 7 July 2019).
Moraes, G. P. de A. et al. (2017) ‘Screening and diagnosing
postpartum depression: when and how?’, Trends in
Psychiatry and Psychotherapy. Associação de
Psiquiatria do Rio Grande do Sul, 39(1), pp. 54–61. doi:
10.1590/2237-6089-2016-0034.
Schober, P., Boer, C. and Schwarte, L. A. (2018)
‘Correlation Coefficients’, Anesthesia & Analgesia,
126(5), pp. 1763–1768. doi: 10.1213/ANE.00000000
00002864.
Stewart, D. (2005) ‘Depression during pregnancy.’,
Canadian family physician Medecin de famille
canadien. College of Family Physicians of Canada,
51(8), pp. 1061–7. Available at: http://www.ncbi.nlm.
nih.gov/pubmed/16121822 (Accessed: 2 December
2019).
Tsanas, A. et al. (2012) ‘Novel Speech Signal Processing
Algorithms for High-Accuracy Classification of
Parkinson’s Disease’, IEEE Transactions on
Biomedical Engineering, 59(5), pp. 1264–1271. doi:
10.1109/TBME.2012.2183367.
Tsanas, A., Little, M. A. and McSharry, P. E. (2013) ‘A
methodology for the analysis of medical data’, in
Handbook of Systems and Complexity in Health.
Springer, pp. 113–125.