applications: A comprehensive survey. CoRR,
abs/1702.05374.
Dose, H., Møller, J. S., Iversen, H. K., and Puthusserypady,
S. (2018). An end-to-end deep learning approach to
MI-EEG signal classification for BCIs. Expert Sys-
tems with Applications, 114:532 – 542.
Du, Y., Jin, W., Wei, W., Hu, Y., and Geng, W. (2017). Sur-
face EMG-based inter-session gesture recognition en-
hanced by deep domain adaptation. Sensors (Basel,
Switzerland), 17(3):458. 28245586[pmid].
Farshchian, A., Gallego, J. A., Cohen, J. P., Bengio, Y.,
Miller, L. E., and Solla, S. A. (2019). Adversarial do-
main adaptation for stable brain-machine interfaces.
In International Conference on Learning Representa-
tions.
Fernando, B., Habrard, A., Sebban, M., and Tuytelaars, T.
(2013). Unsupervised visual domain adaptation using
subspace alignment. In ICCV.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P.,
Larochelle, H., Laviolette, F., Marchand, M., and
Lempitsky, V. (2016). Domain-adversarial training of
neural networks. J. Mach. Learn. Res., 17(1):2096–
2030.
Ghahramani, Z. (2015). Probabilistic machine learning and
artificial intelligence. Nature, 521(7553):452–459.
Glorot, X., Bordes, A., and Bengio, Y. (2011). Domain
adaptation for large-scale sentiment classification: A
deep learning approach. In Getoor, L. and Scheffer,
T., editors, ICML, pages 513–520. Omnipress.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative Adversarial Nets. In Ad-
vances in Neural Information Processing Systems 27.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Comput., 9(8):1735–1780.
Hu, Y., Wong, Y., Wei, W., Du, Y., Kankanhalli, M.,
and Geng, W. (2018). A novel attention-based hy-
brid CNN-RNN architecture for sEMG-based gesture
recognition. PLOS ONE, 13(10):1–18.
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
and Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963.
Jambukia, S. H., Dabhi, V. K., and Prajapati, H. B. (2015).
Classification of ECG signals using machine learning
techniques: A survey. In 2015 International Confer-
ence on Advances in Computer Engineering and Ap-
plications, pages 714–721.
Jordan, M. I. (1986). Attractor dynamics and parallelism
in a connectionist sequential machine. In Proceedings
of the Eighth Annual Conference of the Cognitive Sci-
ence Society, pages 531–546. Hillsdale, NJ: Erlbaum.
Ketyk
´
o, I., Kov
´
acs, F., and Varga, K. Z. (2019). Domain
adaptation for sEMG-based gesture recognition with
Recurrent Neural Networks. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages
1–7.
Kifer, D., Ben-David, S., and Gehrke, J. (2004). Detecting
change in data streams. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases -
Volume 30, VLDB ’04, pages 180–191. VLDB En-
dowment.
Kingma, D. P. and Ba, J. (2014). (adam): A
method for stochastic optimization. cite
arxiv:1412.6980Comment: Published as a con-
ference paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.
Kouw, W. M. (2018). An introduction to domain adaptation
and transfer learning. CoRR, abs/1812.11806.
Kouw, W. M. and Loog, M. (2019). A review of
single-source unsupervised domain adaptation. CoRR,
abs/1901.05335.
Lin, J. (1991). Divergence measures based on the shannon
entropy. IEEE Transactions on Information Theory,
37(1):145–151.
Moreno-Torres, J. G., Raeder, T., Alaiz-Rodr
´
ıGuez, R.,
Chawla, N. V., and Herrera, F. (2012). A unify-
ing view on dataset shift in classification. Pattern
Recogn., 45(1):521–530.
Nair, V. and Hinton, G. E. (2010). Rectified linear units im-
prove restricted boltzmann machines. In Proceedings
of ICML’10, pages 807–814, USA.
Ng, A. Y. and Jordan, M. I. (2001). On discriminative
vs. generative classifiers: A comparison of logistic
regression and naive bayes. In Proceedings of the
14th International Conference on Neural Information
Processing Systems: Natural and Synthetic, NIPS’01,
pages 841–848, Cambridge, MA, USA. MIT Press.
Olah, C. (2015). Understanding LSTM Networks.
Pan, S. J. and Yang, Q. (2010). A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data En-
gineering, 22(10):1345–1359.
Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the dif-
ficulty of training recurrent neural networks. In Pro-
ceedings of ICML’13.
Patricia, N., Tommasi, T., and Caputo, B. (2014). Multi-
source Adaptive Learning for Fast Control of Pros-
thetics Hand. In Proceedings of the 22nd Inter-
national Conference on Pattern Recognition, pages
2769–2774. IEEE.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Parallel distributed processing: Explorations in the
microstructure of cognition, vol. 1. chapter Learning
Internal Representations by Error Propagation, pages
318–362. MIT Press, Cambridge, MA, USA.
Sun, B., Feng, J., and Saenko, K. (2016). Return of frustrat-
ingly easy domain adaptation. In AAAI.
van der Maaten, L., Chen, M., Tyree, S., and Wein-
berger, K. Q. (2014). Marginalizing corrupted fea-
tures. CoRR, abs/1402.7001.
Widmer, G. and Kubat, M. (1996). Learning in the presence
of concept drift and hidden contexts. Mach. Learn.,
23(1):69–101.
Zhao, J., Mathieu, M., and LeCun, Y. (2017). Energy-based
generative adversarial networks. ICLR 2017.
Zhu, J., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired
image-to-image translation using cycle-consistent ad-
versarial networks. In 2017 IEEE International Con-
ference on Computer Vision (ICCV), pages 2242–
2251.
BIOSIGNALS 2020 - 13th International Conference on Bio-inspired Systems and Signal Processing
132