on developing more interpretable systems or generic
prediction explanation methods that mitigate this
problem. Moreover, such systems could be very
powerful when combined with a human-in-the-loop
approach, by allowing the human to learn how text
can be written to teach the correct code to the system.
REFERENCES
Atutxa, A., de Ilarraza, A.D., Gojenola, K., Oronoz, M.,
Perez-de-Viñaspre, O., 2019. Interpretable deep
learning to map diagnostic texts to ICD-10
codes. International Journal of Medical
Informatics, 129, pp.49-59.
Baghdadi, Y., Bourrée, A., Robert, A., Rey, G., Gallay, A.,
Zweigenbaum, P., Grouin, C., Fouillet, A., 2019.
Automatic classification of free-text medical causes
from death certificates for reactive mortality
surveillance in France. International journal of medical
informatics, 131, p.103915.
Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M.,
Elhadad, N., 2018, June. Multi-label classification of
patient notes: case study on ICD code assignment.
In Workshops at the Thirty-Second AAAI Conference
on Artificial Intelligence.
Boytcheva, S., 2011, September. Automatic matching of
ICD-10 codes to diagnoses in discharge letters.
In Proceedings of the Second Workshop on Biomedical
Natural Language Processing (pp. 11-18).
Cao, L., Gu, D., Ni, Y., Xie, G., 2019. Automatic ICD Code
Assignment based on ICD’s Hierarchy Structure for
Chinese Electronic Medical Records. AMIA Summits
on Translational Science Proceedings, 2019, p.417.
Chen, Y., Lu, H., Li, L., 2017. Automatic ICD-10 coding
algorithm using an improved longest common
subsequence based on semantic similarity. PloS
one, 12(3), p.e0173410.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H. and Bengio, Y., 2014.
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.
Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F. and
Sun, J., 2016, December. Doctor ai: Predicting clinical
events via recurrent neural networks. In Machine
Learning for Healthcare Conference (pp. 301-318).
Chollet, F., and others, 2015. Keras, https://keras.io.
Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014.
Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.
3555.
Du, J., Chen, Q., Peng, Y., Xiang, Y., Tao, C., Lu, Z., 2019.
ML-Net: multi-label classification of biomedical texts
with deep neural networks. Journal of the American
Medical Informatics Association, 26(11), pp.1279-
1285.
Duarte, F., Martins, B., Pinto, C.S., Silva, M.J., 2018. Deep
neural models for ICD-10 coding of death certificates
and autopsy reports in free-text. Journal of biomedical
informatics, 80, pp.64-77.
Feinerer, I., 2018. Introduction to the tm Package Text
Mining in R. Retrieved, March 1, p.2019.
Gal, Y. and Ghahramani, Z., 2016. A theoretically
grounded application of dropout in recurrent neural
networks. In Advances in neural information
processing systems (pp. 1019-1027).
Gargiulo, F., Silvestri, S., Ciampi, M., 2018. Deep
Convolution Neural Network for Extreme Multi-label
Text Classification. In HEALTHINF (pp. 641-650).
Hochreiter, S. and Schmidhuber, J., 1997. Long short-term
memory. Neural computation, 9(8), pp.1735-1780.
Karimi, S., Dai, X., Hassanzadeh, H., Nguyen, A., 2017,
August. Automatic diagnosis coding of radiology
reports: a comparison of deep learning and
conventional classification methods. In BioNLP 2017
(pp. 328-332).
Kemp, J., Rajkomar, A., Dai, A.M., 2019. Improved Patient
Classification with Language Model Pretraining Over
Clinical Notes. arXiv preprint arXiv:1909.03039.
Koh, P.W. and Liang, P., 2017, August. Understanding
black-box predictions via influence functions.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70 (pp. 1885-1894). JMLR.
org.
Koopman, B., Karimi, S., Nguyen, A., McGuire, R.,
Muscatello, D., Kemp, M., Truran, D., Zhang, M.,
Thackway, S., 2015. Automatic classification of
diseases from free-text death certificates for real-time
surveillance. BMC medical informatics and decision
making, 15(1), p.53.
Koopman, B., Zuccon, G., Nguyen, A., Bergheim, A.,
Grayson, N., 2015. Automatic ICD-10 classification of
cancers from free-text death certificates. International
journal of medical informatics, 84(11), pp.956-965.
Lin, C., Lou, Y.S., Tsai, D.J., Lee, C.C., Hsu, C.J., Wu,
D.C., Wang, M.C., Fang, W.H., 2019. Projection Word
Embedding Model with Hybrid Sampling Training for
Classifying ICD-10-CM Codes: Longitudinal
Observational Study. JMIR medical informatics, 7(3),
p.e14499.
Liu, J., Zhang, Z., Razavian, N., 2018. Deep ehr: Chronic
disease prediction using medical notes. arXiv preprint
arXiv:1808.04928.
Menger, V., Scheepers, F., van Wijk, L.M., Spruit, M.,
2018. DEDUCE: A pattern matching method for
automatic de-identification of Dutch medical
text. Telematics and Informatics, 35(4), pp.727-736.
Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Karafiát, M., Burget, L., Černocký, J.,
Khudanpur, S., 2010. Recurrent neural network based
language model. In Eleventh annual conference of the
international speech communication association.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and
Dean, J., 2013. Distributed representations of words
and phrases and their compositionality. In Advances in