He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual
Learning for Image Recognition. ArXiv:1512.03385
[Cs]. http://arxiv.org/abs/1512.03385
Hollandi, R., Szkalisity, A., Toth, T., Tasnadi, E., Molnar,
C., Mathe, B., Grexa, I., Molnar, J., Balind, A., Gorbe,
M., Kovacs, M., Migh, E., Goodman, A., Balassa, T.,
Koos, K., Wang, W., Bara, N., Kovacs, F., Paavolainen,
L., … Horvath, P. (2019). A deep learning framework
for nucleus segmentation using image style transfer.
BioRxiv, 580605. https://doi.org/10.1101/580605
Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2018).
Image-to-Image Translation with Conditional
Adversarial Networks. ArXiv:1611.07004 [Cs].
http://arxiv.org/abs/1611.07004
Jackson, C. (2019, October 17). Sox-10 Virtual
Immunohistochemistry: An Application of Artificial
Intelligence Using a Convolutional Neural Network.
ADSP 56th annual meeting.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet Classification with Deep Convolutional
Neural Networks. In F. Pereira, C. J. C. Burges, L.
Bottou, & K. Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems 25 (pp. 1097–1105).
Curran Associates, Inc. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf
Lahiani, A., Gildenblat, J., Klaman, I., Albarqouni, S.,
Navab, N., & Klaiman, E. (2018). Virtualization of
tissue staining in digital pathology using an
unsupervised deep learning approach.
ArXiv:1810.06415 [Cs]. http://arxiv.org/abs/
1810.06415
Layfield, L. J., Esebua, M., Frazier, S. R., Hammer, R. D.,
Bivin, W. W., Nguyen, V., Ersoy, I., & Schmidt, R. L.
(2017). Accuracy and Reproducibility of
Nuclear/Cytoplasmic Ratio Assessments in Urinary
Cytology Specimens. Diagnostic Cytopathology, 45(2),
107–112. https://doi.org/10.1002/dc.23639
Levy, J., Salas, L. A., Christensen, B. C., Sriharan, A., &
Vaickus, L. J. (2020). PathFlowAI: A High-Throughput
Workflow for Preprocessing, Deep Learning and
Interpretation in Digital Pathology. Pacific Symposium
on Biocomputing, 25, 403–414. https://doi.org/
10.1101/19003897
Lotfollahi, M., Wolf, F. A., & Theis, F. J. (2019). ScGen
predicts single-cell perturbation responses. Nature
Methods, 16(8), 715–721. https://doi.org/10.1038/
s41592-019-0494-8
Lowe, D. G. (2004). Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of
Computer Vision, 60(2), 91–110. https://doi.org/
10.1023/B:VISI.0000029664.99615.94
Mahmood, F., Borders, D., Chen, R., McKay, G. N.,
Salimian, K. J., Baras, A., & Durr, N. J. (2018). Deep
Adversarial Training for Multi-Organ Nuclei
Segmentation in Histopathology Images.
ArXiv:1810.00236 [Cs]. http://arxiv.org/abs/
1810.00236
Masugi, Y., Abe, T., Tsujikawa, H., Effendi, K.,
Hashiguchi, A., Abe, M., Imai, Y., Hino, K., Hige, S.,
Kawanaka, M., Yamada, G., Kage, M., Korenaga, M.,
Hiasa, Y., Mizokami, M., & Sakamoto, M. (2017).
Quantitative assessment of liver fibrosis reveals a
nonlinear association with fibrosis stage in
nonalcoholic fatty liver disease: Masugi, Abe, et al.
Hepatology Communications, 2. https://doi.org/
10.1002/hep4.1121
Miller, D. D., & Brown, E. W. (2018). Artificial
Intelligence in Medical Practice: The Question to the
Answer? The American Journal of Medicine, 131(2),
129–133. https://doi.org/10.1016/
j.amjmed.2017.10.035
Mohamed, A., Gonzalez, R. S., Lawson, D., Wang, J., &
Cohen, C. (2013). SOX10 Expression in Malignant
Melanoma, Carcinoma, and Normal Tissues. Applied
Immunohistochemistry & Molecular Morphology,
21(6), 506. https://doi.org/10.1097/
PAI.0b013e318279bc0a
O’Malley, A. J. (2013). The analysis of social network data:
An exciting frontier for statisticians. Statistics in
Medicine, 32(4), 539–555. https://doi.org/10.1002/
sim.5630
Pontalba, J. T., Gwynne-Timothy, T., David, E., Jakate, K.,
Androutsos, D., & Khademi, A. (2019). Assessing the
Impact of Color Normalization in Convolutional Neural
Network-Based Nuclei Segmentation Frameworks.
Frontiers in Bioengineering and Biotechnology, 7, 300.
https://doi.org/10.3389/fbioe.2019.00300
Quiros, A. C., Murray-Smith, R., & Yuan, K. (2019).
Pathology GAN: Learning deep representations of
cancer tissue. ArXiv:1907.02644 [Cs, Eess, Stat].
http://arxiv.org/abs/1907.02644
Raab, S. S. (2000). The Cost-Effectiveness of
Immunohistochemistry. Archives of Pathology &
Laboratory Medicine, 124(8), 1185–1191.
https://doi.org/10.1043/0003-
9985(2000)124<1185:TCEOI>2.0.CO;2
Rana, A., Yauney, G., Lowe, A., & Shah, P. (2018).
Computational Histological Staining and Destaining of
Prostate Core Biopsy RGB Images with Generative
Adversarial Neural Networks. 2018 17th IEEE
International Conference on Machine Learning and
Applications (ICMLA), 828–834. https://doi.org/
10.1109/ICMLA.2018.00133
Rivenson, Y., Liu, T., Wei, Z., Zhang, Y., Haan, K. de, &
Ozcan, A. (2019). PhaseStain: The digital staining of
label-free quantitative phase microscopy images using
deep learning. Light: Science & Applications, 8(1), 1–
11. https://doi.org/10.1038/s41377-019-0129-y
Rivenson, Y., Wang, H., Wei, Z., Haan, K., Zhang, Y., Wu,
Y., Gunaydin, H., Zuckerman, J., Chong, T., Sisk, A.,
Westbrook, L., Wallace, W., & Ozcan, A. (2019).
Virtual histological staining of unlabelled tissue-
autofluorescence images via deep learning. Nature
Biomedical Engineering, 3. https://doi.org/10.1038/
s41551-019-0362-y
Vaickus, L. J., Suriawinata, A. A., Wei, J. W., & Liu, X.
(2019). Automating the Paris System for urine
cytopathology—A hybrid deep-learning and