Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. (2017). Improved training of wasser-
stein gans. In Advances in Neural Information Pro-
cessing Systems, pages 5767–5777.
Han, S., Pool, J., Narang, S., Mao, H., Gong, E., Tang, S.,
Elsen, E., Vajda, P., Paluri, M., Tran, J., et al. (2016).
Dsd: Dense-sparse-dense training for deep neural net-
works. arXiv preprint arXiv:1607.04381.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilibrium.
In Advances in Neural Information Processing Sys-
tems, pages 6626–6637.
Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Pro-
gressive growing of gans for improved quality, stabil-
ity, and variation. arXiv preprint arXiv:1710.10196.
Ke, T.-W., Maire, M., and Yu, S. X. (2017). Multigrid neu-
ral architectures. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 6665–6673.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Lin, C. H., Chang, C.-C., Chen, Y.-S., Juan, D.-C., Wei,
W., and Chen, H.-T. (2019). Coco-gan: Generation
by parts via conditional coordinating. arXiv preprint
arXiv:1904.00284.
Liu, H., Simonyan, K., and Yang, Y. (2018). Darts:
Differentiable architecture search. arXiv preprint
arXiv:1806.09055.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep
learning face attributes in the wild. In Proceedings
of the IEEE international conference on computer vi-
sion, pages 3730–3738.
Luo, J.-H., Wu, J., and Lin, W. (2017). Thinet: A filter level
pruning method for deep neural network compression.
In Proceedings of the IEEE international conference
on computer vision, pages 5058–5066.
Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and
Paul Smolley, S. (2017). Least squares generative
adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages
2794–2802.
Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.
(2018). Spectral normalization for generative adver-
sarial networks. arXiv preprint arXiv:1802.05957.
Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K.
(2016). Pixel recurrent neural networks. arXiv
preprint arXiv:1601.06759.
Radford, A., Metz, L., and Chintala, S. (2015). Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Xie, S., Girshick, R., Doll
´
ar, P., Tu, Z., and He, K. (2017).
Aggregated residual transformations for deep neural
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–
1500.
Xie, S., Kirillov, A., Girshick, R., and He, K. (2019). Ex-
ploring randomly wired neural networks for image
recognition. arXiv preprint arXiv:1904.01569.
Stabilizing GANs with Soft Octave Convolutions
23