Mukhopadhyay, S. C.(2015). Activity and anomaly
detection in smart home: A survey. In Smart Sen-
sors, Measurement and Instrumentation, pages 191–
220. Springer International Publishing.
Calvaresi, D., Cesarini, D., Sernani, P., Marinoni, M., Drag-
oni, A. F., and Sturm, A. (2016). Exploring the ambi-
ent assisted living domain: a systematic review. Jour-
nal of Ambient Intelligence and Humanized Comput-
ing, 8(2):239–257.
Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., and Yu,
Z. (2012). Sensor-based activity recognition. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(6):790–808.
Clement, J., Ploennigs, J., and Kabitzsch, K. (2012). Smart
meter: Detect and individualize ADLs. In Ambient
Assisted Living, pages 107–122. Springer Berlin Hei-
delberg.
Clement, J., Ploennigs, J., and Kabitzsch, K. (2013). De-
tecting activities of daily living with smart meters.
In Ambient Assisted Living, pages 143–160. Springer
Berlin Heidelberg.
Eldib, M., Deboeverie, F., Philips, W., and Aghajan, H.
(2016). Behavior analysis for elderly care using a
network of low-resolution visual sensors. Journal of
Electronic Imaging, 25(4):041003.
Fischer, F. and Kr
¨
amer, A., editors (2016). eHealth in
Deutschland. Springer Berlin Heidelberg.
Fitzner, K. and Finke, U. (2012). L
¨
uftungsregeln f
¨
ur
freie L
¨
uftung. Bundesanstalt f
¨
ur Arbeitsschutz und Ar-
beitsmedizin.
Floeck, M. and Litz, L. (2009). Inactivity patterns and alarm
generation in senior citizens’ houses. In 2009 Euro-
pean Control Conference (ECC), IEEE.
Froehlich, J., Larson, E., Saba, E., Campbell, T., Atlas,
L., Fogarty, J., and Patel, S. (2011). A longitudinal
study of pressure sensing to infer real-world water us-
age events in the home. In Lecture Notes in Computer
Science, pages 50–69. Springer Berlin Heidelberg.
Ghasemi, V. and Pouyan, A. A. (2015). Activity recogni-
tion in smart homes using absolute temporal informa-
tion in dynamic graphical models. In 2015 10th Asian
Control Conference (ASCC), IEEE.
Gu, Y., Ren, F., and Li, J. (2016). PAWS: Passive human
activity recognition based on WiFi ambient signals.
IEEE Internet of Things Journal, 3(5):796–805.
Hamper, A. (2020). Digitale service innovation f
¨
ur die
gesundheitsversorgung im vernetzten zuhause.
Hassan, M. M., Uddin, M. Z., Mohamed, A., and Almo-
gren, A. (2018). A robust human activity recognition
system using smartphone sensors and deep learning.
Future Generation Computer Systems, 81:307–313.
Hoffmann, S. (2016). Technik die unser leben vereinfacht.
Date last accessed 23-August-2019.
Kessel, L., Johnson, L., Arvidsson, H., and Larsen, M.
(2010). The relationship between body and ambient
temperature and corneal temperature. Investigative
Opthalmology & Visual Science, 51(12):6593.
Kim, E., Helal, S., and Cook, D. (2010). Human activ-
ity recognition and pattern discovery.IEEE Pervasive
Computing, 9(1):48–53.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436–444.
Mlinac, M. E. and Feng, M. C. (2016). Assessment of ac-
tivities of daily living, self-care, and independence.
Archives of Clinical Neuropsychology, 31(6):506–
516.
Munstermann, M. (2015). Technisch unterst
¨
utzte Pflege von
morgen. Springer Fachmedien Wiesbaden.
Parra, L., Sendra, S., Jim
´
enez, J. M., and Lloret, J. (2015).
Multimedia sensors embedded in smartphones for am-
bient assisted living and e-health. Multimedia Tools
and Applications, 75(21):13271–13297.
Paulus, W. (2015). Selbst
¨
andig zuhause leben im alter: Auf
dem weg zu einer integrierten versorgung. Technical
report, Institut Arbeit und Technik (IAT), Westf
¨
alische
Hochschule, Gelsenkirchen.
Perkowitz, M., Philipose, M., Fishkin, K., and Patterson,
D. J. (2004). Mining models of human activities from
the web. In Proceedings of the 13th conference on
World Wide Web - WWW’04. ACM Press.
Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson,
D. J., Fox, D., Kautz, H., and Hahnel, D. (2004). In-
ferring activities from interactions with objects. IEEE
Pervasive Computing, 3(4):50–57.
Pu, Q., Gupta, S., Gollakota, S., and Patel, S. (2013).
Whole-home gesture recognition using wireless sig-
nals. In Proceedings of the 19th annual International
Conference on Mobile computing & networking - Mo-
biCom’13. ACM Press.
Rashidi, P. and Mihailidis, A. (2013). A survey on ambient-
assisted living tools for older adults. IEEE Journal of
Biomedical and Health Informatics, 17(3):579–590.
Reyes-Ortiz, J.-L., Oneto, L., Sam
`
a, A., Parra, X., and
Anguita, D.(2016). Transition-aware human activ-
ity recognition using smartphones. Neurocomputing,
171:754–767.
Saint-Erne, N. (2017). Water quality in the freshwater
aquarium.
Tan, X., Chen, S., Zhou, Z.-H., and Zhang, F. (2006). Face
recognition from a single image per person: A survey.
Pattern Recognition, 39(9):1725–1745.
Uddin, M., Khaksar, W., and Torresen, J. (2018). Ambi-
ent sensors for elderly care and independent living: A
survey.Sensors, 18(7):2027.
Wang, W., Liu, A. X., Shahzad, M., Ling, K., and Lu, S.
(2015). Understanding and modeling of WiFi sig-
nal based human activity recognition. In Proceedings
of the 21st Annual International Conference on Mo-
bile Computing and Networking - MobiCom’15. ACM
Press.
Wilhelm, S., Jakob, D., and Ahrens, D. (2020a). Human
presence detection by monitoring the indoor co2 con-
centration. In Mensch und Computer 2020 (MuC’20).
ACM, New York, NY, USA.
Wilhelm, S., Jakob, D., Kasbauer, J., and Ahrens, D.
(2021). Gelap: German labeled dataset for power
consumption. In Proceedings of the International
Congress on Information and Communication Tech-
nology. Springer, Springer Singapore. (to appear).
Activity-monitoring in Private Households for Emergency Detection: A Survey of Common Methods and Existing Disaggregable Data
Sources
271