Kim, T., Cha, M., Kim, H., Lee, J. K., and Kim, J. (2017).
Learning to discover cross-domain relations with gen-
erative adversarial networks. CoRR, abs/1703.05192.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. CoRR, abs/1312.6114.
Kurach, K., Lucic, M., Zhai, X., Michalski, M., and
Gelly, S. (2018). The GAN landscape: Losses, ar-
chitectures, regularization, and normalization. CoRR,
abs/1807.04720.
Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken,
A. P., Tejani, A., Totz, J., Wang, Z., and Shi, W.
(2016). Photo-realistic single image super-resolution
using a generative adversarial network. CoRR,
abs/1609.04802.
Liang, X., Zhang, H., and Xing, E. P. (2017). Generative
semantic manipulation with contrasting GAN. CoRR,
abs/1708.00315.
Liu, M., Breuel, T., and Kautz, J. (2017). Unsuper-
vised image-to-image translation networks. CoRR,
abs/1703.00848.
Liu, M., Huang, X., Mallya, A., Karras, T., Aila, T., Lehti-
nen, J., and Kautz, J. (2019). Few-shot unsupervised
image-to-image translation. CoRR, abs/1905.01723.
Liu, M. and Tuzel, O. (2016). Coupled generative adversar-
ial networks. CoRR, abs/1606.07536.
Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., and
Gool, L. V. (2017). Pose guided person image gener-
ation. CoRR, abs/1705.09368.
Mejjati, Y. A., Richardt, C., Tompkin, J., Cosker, D., and
Kim, K. I. (2018). Unsupervised attention-guided im-
age to image translation. CoRR, abs/1806.02311.
Mirza, M. and Osindero, S. (2014). Conditional generative
adversarial nets. CoRR, abs/1411.1784.
Park, T., Liu, M.-Y., Wang, T.-C., and Zhu, J.-Y. (2019).
Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.
Qian, R., Tan, R. T., Yang, W., Su, J., and Liu, J. (2017).
Attentive generative adversarial network for raindrop
removal from a single image.
Radford, A., Metz, L., and Chintala, S. (2015). Unsuper-
vised representation learning with deep convolutional
generative adversarial networks.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.
Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang,
W., and Webb, R. (2016). Learning from simulated
and unsupervised images through adversarial training.
CoRR, abs/1612.07828.
Taigman, Y., Polyak, A., and Wolf, L. (2016). Un-
supervised cross-domain image generation. CoRR,
abs/1611.02200.
Talreja, V., Taherkhani, F., Valenti, M. C., and Nasrabadi,
N. M. (2019). Attribute-guided coupled gan for cross-
resolution face recognition.
Tang, H., Liu, H., Xu, D., Torr, P. H. S., and Sebe,
N. (2019). AttentionGAN: Unpaired Image-to-
Image Translation using Attention-Guided Genera-
tive Adversarial Networks. arXiv e-prints, page
arXiv:1911.11897.
Tang, H., Xu, D., Wang, W., Yan, Y., and Sebe, N. (2019).
Dual Generator Generative Adversarial Networks for
Multi-domain Image-to-Image Translation. volume
11361 LNCS, pages 3–21. Springer Verlag.
Tung, H. F., Harley, A. W., Seto, W., and Fragkiadaki, K.
(2017). Adversarial inverse graphics networks: Learn-
ing 2d-to-3d lifting and image-to-image translation
from unpaired supervision. CoRR, abs/1705.11166.
Vondrick, C., Pirsiavash, H., and Torralba, A. (2016).
Generating videos with scene dynamics. CoRR,
abs/1609.02612.
Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H.,
Wang, X., and Tang, X. (2017). Residual attention net-
work for image classification. CoRR, abs/1704.06904.
Wang, T.-C., Liu, M.-Y., Tao, A., Liu, G., Kautz, J., and
Catanzaro, B. (2019). Few-shot Video-to-Video Syn-
thesis. arXiv e-prints, page arXiv:1910.12713.
Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz,
J., and Catanzaro, B. (2018a). Video-to-video syn-
thesis. In Advances in Neural Information Processing
Systems (NeurIPS).
Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and
Catanzaro, B. (2018b). High-resolution image synthe-
sis and semantic manipulation with conditional gans.
In CVPR.
Wang, Z., Chen, J., and Hoi, S. C. H. (2019). Deep Learning
for Image Super-resolution: A Survey.
Wang, Z., She, Q., and Ward, T. E. (2020). Generative ad-
versarial networks in computer vision: A survey and
taxonomy.
Wu, H., Zheng, S., Zhang, J., and Huang, K. (2017).
GP-GAN: Towards Realistic High-Resolution Image
Blending.
Yang, C., Kim, T., Wang, R., Peng, H., and Kuo, C. J.
(2018). Show, attend and translate: Unsupervised im-
age translation with self-regularization and attention.
CoRR, abs/1806.06195.
Yi, Z., Zhang, H., Tan, P., and Gong, M. (2017). Dualgan:
Unsupervised dual learning for image-to-image trans-
lation. CoRR.
Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A.
(2018). Self-attention generative adversarial net-
works.
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017a).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV 2017.
Zhu, J.-Y., Zhang, R., Pathak, D., Darrell, T., Efros, A. A.,
Wang, O., and Shechtman, E. (2017b). Toward mul-
timodal image-to-image translation. In Advances in
NIPS.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
264