5 CONCLUSIONS
A case study was executed for the evaluation of our
Multi-Kinect-System to quantify the benefits of
technology-based education enhancements. In this
first approach, we use participating observation and
audio recordings during two types of feedback rounds
after a care scenario, completed by the study
participants. One feedback is given by a nursing
instructor without advanced visual 3D recording data
and one feedback is given with this data. These
feedback rounds are differing significantly in various
parameters. We identified meaningful features, which
are indicating the usefulness of our system in the
education of nurses in elderly care.
ACKNOWLEDGEMENTS
This work is carried out in the research project
ITAGAP, funding number: 02L14A240 of the
Bundesministerium für Bildung und Forschung –
BMBF (German Federal Ministry for Education and
Research) at the Evangelische Altenpflegeschule e.V.
Oldenburg (Evangelical Nursing School).
REFERENCES
AMTI, 2016. Accupower force platform, accessed: 2020-
03-18. URL
http://www.accupowersolutions.com/force-platforms.
Besl, P.J., McKay, N.D., 1992. A method for registration of
3-d shapes. In IEEE Transactions on Pattern Analysis
and Machine Intelligence 14 (2), 239-256,
https://doi.org/10.1109/34.12179.
Brinkmann, A., Fifelski, C., Lau, S., Kowalski, C., Meyer,
O., Diekmann, R., Isken, M., Fudickar, S., Hein, A.,
2020. The AAL/Care Laboratory – A Healthcare
Prevention System for Caregivers. In Nanomaterials
and Energy 9,1, 27-38,
https://doi.org/10.1680/jnaen.19.00021.
DeWalt, K.M., DeWalt, B.R., 2011. Participant
Observation: A guide for fieldworkers, Alta Mira.
Plymouth.
Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R.,
Hutter, M., Siegwart, R., 2015. Kinect v2 for mobile
robot navigation: Evaluation and modelling. In 2015
International Conference on Advanced Robotics
(ICAR). Istanbul, 388-394,
https://doi.org/10.1109/ICAR.2015.7251485.
Destatis, 2019. Federal office of statistics website,
accessed: 2020-03-18. URL
https://service.destatis.de/bevoelkerungspyramide/#!y
=2050.
Fifelski, C., Brinkmann, A., Ortmann, S.M., Isken, M.,
Hein, A., 2018. Multi depth camera system for 3d data
recording for training and education of nurses. In 2018
International Conference on Computational Science
and Computational Intelligence (CSCI). Las Vegas,
NV, 679-684,
https://doi.org/10.1109/CSCI46756.2018.00137.
Jäger, M., Jordan, C., Theilmeier, A., Wortmann, N., Kuhn,
S., Nienhaus, A., Luttmann, A., 2014. Analyse der
Lumbalbelastung beim manuellen Bewegen von
Patienten zur Prävention biomechanischer
Überlastungen von Beschäftigten im
Gesundheitswesen. In Zentralblatt für Arbeitsmedizin,
64, 98-112,
https://doi.org/10.1007/s40664-013-0010-4
Maietta, L., Hatch, F., 2011. Kinaesthetics Infant Handling,
Hans Huber. Bern, 2
nd
edition.
Kliner, K., Rennert, D., Richter, M. (Eds), 2017.
Gesundheit und Arbeit – Blickpunkt Gesundheitswesen.
Medizinisch Wissenschaftliche Verlagsgesellschaft.
Berlin.
Kowalski, M., Naruniec, J., Daniluk, M., 2015. Livescan3d:
A fast and inexpensive 3d data acquisition system for
multiple kinect v2 sensors. In 2015 International
Conference on 3D Vision. Lyon, 318-325,
https://doi.org/10.1109/3DV.2015.43.
Lins, C., Eckhoff, D., Klausen, A., Hellmers, S., Hein, A.,
Fudickar, S., 2019. Cardiopulmonary resuscitation
quality parameters from motion capture data using
differential evolution fitting of sinusoids. In Applied
Soft Computing Journal 79, 300-309,
https://doi.org/10.1016/j.asoc.2019.03.023.
Lins, C., Klausen, A., Fudickar, S., Hellmers, S., Lipprandt,
M., Röhrig, R., Hein, A., 2018. Determining
cardiopulmonary resuscitation parameters with
differential evolution optimization of sinusoidal curves.
In Proceedings of the 11th International Joint
Conference on Biomedical Engineering Systems and
Technologies, Oldenburg, 665-670,
https://doi.org/10.5220/0006732806650670.
Motion Workshop, 2020. Motion capture system - shadow
motion sensor suit, accessed: 2020-03-18. URL
http://www.motionshadow.com.
Rashidi, P., Mihailidis, A., 2013. A survey on ambient-
assisted living tools for older Adults. In IEEE Journal
of Biomedical and Health Informatics 17 (3), 579-590,
https://doi.org/10.1109/JBHI.2012.2234129.
Reichold, J., Agrawal, A., Thurlings, M., Cohen, I., Weber-
Fiori, B., Rölle, A., Hassan, M., Dürr, M., Pfeil, U.,
Pape, A.-A., Grünert, G., Schmidt, A., Pfeil, M., Fäßler,
Jauch, V.V., Reiterer, H., Winter, M., Ertel, W.,
Eberhardt, J., 2017. Human-machine interaction in
care-education. In Burghardt, M., Wimmer, R., Wol,
C., Womser-Hacker C. (Eds), Mensch und Computer
2017: Tagungsband. Books on Demand. Norderstedt,
351-356, https://doi.org/10.18420/muc2017-ws08-
0311.
Roh, Y.S., Lee, W.S., Chung, H.S., Park, Y.M., 2013. The
effects of simulationbased resuscitation training on
nurses' self-efficacy and satisfaction. In Nurse