Sassi and E. Casiraghi for fruitful discussions.
C.A. and S.F. were supported by the PRIDE pro-
gram of the Luxembourg National Research Found
through the grants PRIDE17/12252781/DRIVEN and
PRIDE17/12244779/PARK-QC, respectively. This
work was further supported by the Luxembourgish
Espoir-en-T
ˆ
ete Rotary Club award, the Auguste et Si-
mone Pr
´
evot foundation, and the Agaajani family do-
nation for Alzheimer’s Disease research.
REFERENCES
Alberts, B. (2017). Molecular Biology of the Cell. W.W.
Norton.
Belthangady, C. and Royer, L. (2018). Applications,
promises, and pitfalls of deep learning for fluores-
cence image reconstruction.
Bouvier, D. S., Jones, E. V., Quesseveur, G., Davoli, M. A.,
A Ferreira, T., Quirion, R., Mechawar, N., and Murai,
K. K. (2016). High Resolution Dissection of Reactive
Glial Nets in Alzheimer’s Disease. Sci Rep, 6:24544.
Buades, A., Coll, B., and Morel, J. . (2005). A non-local al-
gorithm for image denoising. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 60–65 vol.
2.
Chung, K., Wallace, J., Kim, S.-Y., Kalyanasundaram, S.,
Andalman, A., Davidson, T., Mirzabekov, J., Zalo-
cusky, K., Mattis, J., Denisin, A., Pak, S., Bernstein,
H., Ramakrishnan, C., Grosenick, L., Gradinaru, V.,
and Deisseroth, K. (2013). Structural and molecu-
lar interrogation of intact biological systems. Nature,
497.
Dabov, K. ., Foi, A. ., Katkovnik, V. ., and Egiazarian, K. .
(2007). Image Denoising by Sparse 3-D Transform-
Domain Collaborative Filtering. IEEE Transactions
on Image Processing, 16(8):2080–2095.
Donoho, D. L. (1995). De-noising by soft-thresholding.
IEEE Transactions on Information Theory,
41(3):613–627.
Dugger, B. N. and Dickson, D. W. (2017). Pathology of
neurodegenerative diseases. Cold Spring Harbor per-
spectives in biology, 9(7):a028035. 28062563[pmid].
Goedert, M., Jakes, R., and Vanmechelen, E. (1995). Mon-
oclonal antibody at8 recognises tau protein phospho-
rylated at both serine 202 and threonine 205. Neuro-
science Letters, 189(3):167 – 170.
Hunter, S. and Brayne, C. (2017). Do anti-amyloid beta
protein antibody cross reactivities confound alzheimer
disease research? Journal of negative results in
biomedicine, 16(1):1–1. 28126004[pmid].
Im, K., Mareninov, S., Diaz, M. F. P., and Yong, W. H.
(2019). An Introduction to Performing Immunofluo-
rescence Staining. Methods Mol Biol, 1897:299–311.
Komin, N. and Skupin, A. (2017). How to address cellular
heterogeneity by distribution biology. Current Opin-
ion in Systems Biology, 3:154–160.
Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L.
(2013). Detecting outliers: Do not use standard devi-
ation around the mean, use absolute deviation around
the median. Journal of Experimental Social Psychol-
ogy, 49(4):764 – 766.
Lim, J. S. (1990). Two-Dimensional Signal and Image Pro-
cessing. Prentice-Hall, Inc., USA.
Marti Colom-Cadena, E. G. (2013). Confluence of a-
synuclein, tau, and b-amyloid pathologies in demen-
tia with Lewy bodies. J. Neuropathol. Exp. Neurol.,
72(12):1203–1212.
Niblack, W. (1985). An Introduction to Digital Image Pro-
cessing. Strandberg Publishing Company, DNK.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66.
Quesseveur, G., Fouquier d’Herouel, A., Murai, K. K., and
Bouvier, D. S. (2019). A Specialized Method to Re-
solve Fine 3D Features of Astrocytes in Nonhuman
Primate (Marmoset, Callithrix jacchus) and Human
Fixed Brain Samples. Methods Mol. Biol., 1938:85–
95.
Rodrigue, K. M. (2012). β-amyloid burden in healthy ag-
ing: regional distribution and cognitive consequences.
Neurology, 78(6):387–395. 22302550[pmid].
Ross, C. A. and Poirier, M. A. (2004). Protein aggrega-
tion and neurodegenerative disease. Nature Medicine,
10(7):S10–S17.
Saito, T. and Rehmsmeier, M. (2015). The precision-recall
plot is more informative than the roc plot when evalu-
ating binary classifiers on imbalanced datasets. PLOS
ONE, 10(3):1–21.
Salamanca, L., Mechawar, N., Murai, K. K., Balling, R.,
Bouvier, D. S., and Skupin, A. (2019). Mic-mac: An
automated pipeline for high-throughput characteriza-
tion and classification of three-dimensional microglia
morphologies in mouse and human postmortem brain
samples. Glia.
Varghese, F., Bukhari, A. B., Malhotra, R., and De, A.
(2014). Ihc profiler: An open source plugin for the
quantitative evaluation and automated scoring of im-
munohistochemistry images of human tissue samples.
PLOS ONE, 9(5):1–11.
BIOIMAGING 2021 - 8th International Conference on Bioimaging
30