Edition. MIT Press.
Baeza Y., 1999. Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., ISBN 0-201-39829-
X.
Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.N.,
2001. Support vector clustering. Journal of Machine
Learning Research. 2, 125–137.
Bishop, C. M., 2006. Pattern Recognition and Machine
Learning, Springer.
Breiman L., 2001. Random Forests. Machine Learning.
45(1), 5–32. doi:10.1023/A:1010933404324.
Chen Y.C., Suzuki T., Suzuki M., Takao H., Murayama
Y., Ohwada H., 2017. Building a classifier of onset
stroke prediction using random tree algorithm.
International Journal of Machine Learning and
Computing, 7(4), 61-66.
Cortes, C., Vapnik, V.N., 1995. Support-vector networks.
Machine Learning. 20(3), 273–297.
CiteSeerX10.1.1.15.9362. doi:10.1007/BF00994018.
Donnan, G.A., Fisher M., Macleod M., Davis S.M., 2008.
Stroke. The Lancet. 371(9624), 1612–23.
Fritzke B., 1994. A Growing Neural Gas Network Learns
Topologies. Part of: Advances in Neural Information
Processing Systems 7, NIPS.
Girvan M., Newman M.E.J., 2002. Community structure
in social and biological networks, Proc. Natl. Acad.
Sci. USA 99, 7821–7826.
Holte,R.C., 1993. Very simple classification rules perform
well on most commonly used datasets. Machine
Learning.
Italian Ministry of Health website, 2020. http://www.
salute.gov.it/portale/salute/p1_5.jsp? lingua=italiano&
id=28&area=Malattie_cardiovascolari, last accessed
2020/04/24.
John, G.H.; Langley, P., 1995. Estimating Continuous
Distributions in Bayesian Classifiers. Proc. Eleventh
Conf. on Uncertainty in Artificial Intelligence. Morgan
Kaufmann. 338–345. arXiv:1302.4964
Kohonen T., 1988. An introduction to neural computing.
Neural Networks, 1, 3-16.
Kohonen T., 1989. Self-Organization and Associative
Memory, Berlin: Springer-Verlag.
Kohonen T., 1990. The Self Organizing Map. Proc of the
IEEE, 78(9).
Lella L., Licata I., 2017. Prediction of Length of Hospital
Stay using a Growing Neural Gas Model. In
Proceedings of the 8th International Multi-Conference
on Complexity, Informatics and Cybernetics (IMCIC
2017), 175-178.
Lyden P., Raman R., Liu L., Emr M., Warren M., Marler
J., 2009. National Institutes of Health Stroke scale
certification is reliable across multiple venues. Stroke,
40(7), 2507-2511. doi:10.1161/STROKEAHA.116.
015434.
Martinetz, T. M., Schulten, K J., 1991. A "neural-gas"
network learns topologies. In Kohonen, T., Makisara,
K, Simula, 0., and Kangas, J., editors, Artificial Neural
Networks, North-Holland, Amsterdam, 397-402.
Martinetz, T. M., Schulten, K J., 1994. Topology
representing networks. Neural Networks, 7(3), 507-
522.
Mess M., Klein J., Yperzeele L., Vanacker P., Cras P.,
2016. Predicting discharge destination after stroke: A
systematic review. Clin Neurol Neurosurg. 142(15-
21). doi:10.1016/j.clineuro.2016.01.004.
Pereira S., Foley N., Salter K., McClure J.A., Meyer M.,
Brown J., Speechley M., Teasell R., 2014. Discharge
destination of individuals with severe stroke
undergoing rehabilitation: a predictive model. Disabil
Rehabil. 36(9), 727-731. doi:10.3109/09638288.
2014.902510.
Platt,J., 1998. Sequential Minimal Optimization: A Fast
Algorithm for Training Support Vector Machines.
Technical Report MSR-TR-98-14.
Putra Pratama A., Tresno T., Wahyu Purwanza S., 2019.
Development the national institutes of health stroke
scale (NIHSS) for predicting disability and functional
outcome to support discharge planning after ischemic
stroke. Journal Ners, 14(3).
Saver J.L., Filip B., Hamilton S., Yanes A., Craig S., Cho
M., Conwit R., Starkman S., FAST-MAG
Investigators and Coordinators, 2010. Improving the
reliability of stroke disability grading in clinical trials
and clinical practice: the Rankin Focused Assessment
(RFA). Stroke. 41 (5): 992–
doi:10.1161/STROKEAHA.109.571364. PMC
2930146. PMID 20360551
Safe Implementation of Treatments in Stroke website,
2020. https://sitsinternational.org, last accessed
2020/04/24.
Tin Kam Ho, 1998. The Random Subspace Method for
Constructing Decision Forests. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(8),
832–844, DOI:10.1109/34.709601.
Tin Kam Ho, 1995. Random Decision Forests.
Proceedings of the 3rd International Conference on
Document Analysis and Recognition, Montreal, QC,
278–282.
Van Hulle M. M., 1989. Self Organizing Maps. Handbook
of Natural Computing, 585-622.
Wilson J. L., Hareendran A., Grant M., Baird T., Schulz
U.G., Muir K.W., Bone I., 2002. Improving the
Assessment of Outcomes in Stroke: Use of a
Structured Interview to Assign Grades on the Modified
Rankin Scale. Stroke. 33 (9): 2243–2246.
doi:10.1161/01.STR.0000027437.22450.BD. PMID
12215594
Witten,I. H., Frank,E., Hall,M.A., 2011. Data Mining
Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Publishers.
Zdrodowska M., 2019. Attribute selection for stroke
prediction. Sciendo. Doi 10.2478/ama-2019-0026.
Zdrodowska M., Dardzinska M, Chorazy M., Kulakowska
A., 2018. Data Mining Techniques as a tool in
neurological disorders diagnosis. Acta Mechanica et
Automatica, 12(3), 217-220.