Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.
(2000). Image inpainting. In Proceedings of the 27th
annual conference on Computer graphics and interac-
tive techniques, pages 417–424. ACM Press/Addison-
Wesley Publishing Co.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2017a). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence, 40(4):834–
848.
Chen, L.-C., Papandreou, G., Schroff, F., and Adam,
H. (2017b). Rethinking atrous convolution for
semantic image segmentation. arXiv preprint
arXiv:1706.05587.
Criminisi, A., P
´
erez, P., and Toyama, K. (2004). Region
filling and object removal by exemplar-based image
inpainting. IEEE Transactions on image processing,
13(9):1200–1212.
Dumoulin, V. and Visin, F. (2016). A guide to convo-
lution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285.
Efros, A. A. and Leung, T. K. (1999). Texture synthesis by
non-parametric sampling. In iccv, page 1033. IEEE.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Iizuka, S., Simo-Serra, E., and Ishikawa, H. (2017). Glob-
ally and locally consistent image completion. ACM
Transactions on Graphics (TOG), 36(4):107.
Iskakov, K. (2018). Semi-parametric image inpainting.
arXiv preprint arXiv:1807.02855.
Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual
losses for real-time style transfer and super-resolution.
In European conference on computer vision, pages
694–711. Springer.
Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Pro-
gressive growing of gans for improved quality, stabil-
ity, and variation. arXiv preprint arXiv:1710.10196.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow,
B., and Ng, A. Y. (2011). On optimization methods
for deep learning. In Proceedings of the 28th Inter-
national Conference on International Conference on
Machine Learning, pages 265–272. Omnipress.
Li, C. and Wand, M. (2016). Combining markov random
fields and convolutional neural networks for image
synthesis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2479–2486.
Li, X., Liu, M., Zhu, J., Zuo, W., Wang, M., Hu, G.,
and Zhang, L. (2018). Learning symmetry consis-
tent deep cnns for face completion. arXiv preprint
arXiv:1812.07741.
Li, Y., Liu, S., Yang, J., and Yang, M.-H. (2017). Gen-
erative face completion. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 3911–3919.
Li, Z., Zhu, H., Cao, L., Jiao, L., Zhong, Y., and Ma, A.
(2019). Face inpainting via nested generative adver-
sarial networks. IEEE Access, 7:155462–155471.
Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and
Catanzaro, B. (2018a). Image inpainting for irregu-
lar holes using partial convolutions. arXiv preprint
arXiv:1804.07723.
Liu, J. and Jung, C. (2019). Facial image inpainting using
multi-level generative network. In 2019 IEEE Interna-
tional Conference on Multimedia and Expo (ICME),
pages 1168–1173. IEEE.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2018b). Large-
scale celebfaces attributes (celeba) dataset. Retrieved
August, 15:2018.
Park, T., Zhu, J.-Y., Wang, O., Lu, J., Shechtman, E., Efros,
A., and Zhang, R. (2020). Swapping autoencoder for
deep image manipulation. Advances in Neural Infor-
mation Processing Systems, 33.
Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition.
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and
Efros, A. A. (2016). Context encoders: Feature learn-
ing by inpainting. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2536–2544.
P
´
erez, P., Gangnet, M., and Blake, A. (2003). Poisson im-
age editing. In ACM SIGGRAPH 2003 Papers, pages
313–318.
Radford, A., Metz, L., and Chintala, S. (2015). Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Rosebrock, A. (2019). Deep Learning for Computer Vision
with Python. PyImageSearch.com, 2.1.0 edition.
Sun, J., Yuan, L., Jia, J., and Shum, H.-Y. (2005). Im-
age completion with structure propagation. In ACM
Transactions on Graphics (ToG), volume 24, pages
861–868. ACM.
Ulyanov, D., Lebedev, V., Vedaldi, A., and Lempitsky, V. S.
(2016). Texture networks: Feed-forward synthesis of
textures and stylized images. In ICML, pages 1349–
1357.
Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2018). Deep
image prior. In Proceedings of the IEEE Conference
Symmetric Skip Connection Wasserstein GAN for High-resolution Facial Image Inpainting
43