constraints through shape and object actuation. pages
417–426.
Grow, D., Verner, L., and Okamura, A. (2007). Educational
haptics. pages 53–58.
Hamza Lup, F. and Stefan, I. (2018). The haptic paradigm
in education: Challenges and case studies.
Hudin, C., Lozada, J., and Hayward, V. (2015). Localized
tactile feedback on a transparent surface through time-
reversal wave focusing. IEEE transactions on haptics,
8.
Huitema, E. (2012). The future of displays is foldable. In-
formation Display, 28:6–10.
Jang, S., Kim, L., Tanner, K., Ishii, H., and Follmer, S.
(2016). Haptic edge display for mobile tactile inter-
action. pages 3706–3716.
Jeannerod, M. (1984). The timing of natural prehension
movements. Journal of Motor Behavior, 16(3):235–
254. PMID: 15151851.
Jones, G., Minogue, J., Oppewal, T., Cook, M., and Broad-
well, B. (2006). Visualizing without vision at the mi-
croscale: Students with visual impairments explore
cells with touch. Journal of Science Education and
Technology, 15:345–351.
Kantner, L. A., Segall, M. H., Campbell, D. T., and Her-
skovits, M. J. (1968). The influence of culture on vi-
sual perception. Studies in Art Education, 10(1):68.
Kim, S., Park, G., Kim, S.-C., and Jung, J. (2019). Surface
haptics. pages 421–425.
Kim, S.-C., Han, B.-K., and Kwon, D.-S. (2017). Haptic
rendering of 3d geometry on 2d touch surface based
on mechanical rotation. IEEE Transactions on Hap-
tics, PP:1–1.
Klevberg, G. and Anderson, D. (2002). Visual and hap-
tic perception of postural affordances in children and
adults. Human movement science, 21:169–86.
Krufka, S., Barner, K., and Aysal, T. (2007). Visual to tac-
tile conversion of vector graphics. IEEE transactions
on neural systems and rehabilitation engineering : a
publication of the IEEE Engineering in Medicine and
Biology Society, 15:310–21.
Lakshminarayanan, K., Lauer, A., Ramakrishnan, V., Web-
ster, J., and Seo, N. J. (2015). Application of vibration
to wrist and hand skin affects fingertip tactile sensa-
tion. Physiological reports, 3.
Loomis, J. M. (1981). Tactile pattern perception. Percep-
tion, 10(1):5–27.
Loomis, J. M. and Lederman, S. J. (1986). Handbook of
Perception and Human Performance Volume 1: Sen-
sory processes and perceptiong, volume 1. Wiley-
Interscience, New York, NY, 2nd. edition.
Mansour, N., Fath El Bab, A., and Assal, S. (2015). A novel
sma-based micro tactile display device for elasticity
range of human soft tissues: Design and simulation.
McRae, L. T. and McRae, B. J. (1977). Implements us-
able by persons afflicted with arthritis. US Patent
4,035,865.
Minogue, J. and Jones, M. (2006). Haptics in education:
Exploring an untapped sensory modality. Review of
Educational Research - REV EDUC RES, 76:317–
348.
M
¨
uller-Rakow, A., Hemmert, F., Wintergerst, G., and
Jagodzinski, R. (2020). Reflective haptics: Resistive
force feedback for musical performances with stylus-
controlled instruments.
Oakley, I., Brewster, S., and Gray, P. (2001). Communicat-
ing with feeling, pages 61–68.
Pantelios, M., Tsiknas, L., Christodoulou, S., and Pap-
atheodorou, T. (2004). Haptics technology in educa-
tional applications, a case study. JDIM, 2:171–178.
Parisi, D. and Farman, J. (2018). Tactile temporalities: The
impossible promise of increasing efficiency and elim-
inating delay through haptic media. Convergence:
The International Journal of Research into New Me-
dia Technologies, page 135485651881468.
Park, J., Kim, J., Oh, Y., and Tan, H. (2016). Rendering
moving tactile stroke on the palm using a sparse 2d
array. volume 9774, pages 47–56.
Perry, D. and Wright, H. (2009). Touch enhancing pad.
Patent No. 4,657,021, Filed April 13th., 1989, Issued
Aug. 24th., 1993.
Raisamo, J., Raisamo, R., and Surakka, V. (2013). Com-
parison of saltation, amplitude modulation, and a hy-
brid method of vibrotactile stimulation. Haptics, IEEE
Transactions on, 6:517–521.
Sano, A., Mochiyama, H., Takesue, N., Kikuuwe, R., and
Fujimoto, H. (2004). Touchlens: Touch enhancing
tool. pages 71 – 72.
Shin, S. and Choi, S. (2018). Geometry-based haptic tex-
ture modeling and rendering using photometric stereo.
pages 262–269.
Sofia, K. and Jones, L. (2013). Mechanical and psy-
chophysical studies of surface wave propagation dur-
ing vibrotactile stimulation. Haptics, IEEE Transac-
tions on, 6:320–329.
SSI (2020). Screen solutions international: Spherical pro-
jection displays.
Vechev, V., Zarate, J., Lindlbauer, D., Hinchet, R., Shea,
H., and Hilliges, O. (2019). Tactiles: Dual-mode low-
power electromagnetic actuators for rendering contin-
uous contact and spatial haptic patterns in vr. pages
312–320.
Williamson, J., Sund
´
en, D., and Bradley, J. (2015). Glob-
alfestival: evaluating real world interaction on a spher-
ical display. pages 1251–1261.
Xie, X., Liu, S., Yang, C., Yang, Z., Liu, T., Xu, J., Zhang,
C., and Zhai, X. (2017). A review of smart materials
in tactile actuators for information delivery. C, 3:38.
Xu, H., Peshkin, M., and Colgate, J. (2019). How the me-
chanical properties and thickness of glass affect tpad
performance.
Zhou, Q., Hagemann, G., Fafard, D., Stavness, I., and Fels,
S. (2019). An evaluation of depth and size perception
on a spherical fish tank virtual reality display. IEEE
Transactions on Visualization and Computer Graph-
ics, PP:1–1.
Zuffo, M., Ferreira, F., Kurashima, C., Cabral, M., Lopes,
R., Anacleto, J., and Fels, S. (2014). Spheree: An
interactive perspective-corrected spherical 3d display.
HUCAPP 2021 - 5th International Conference on Human Computer Interaction Theory and Applications
24