Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages
2360–2367.
Gong, S., Cristani, M., Yan, S., and Loy, C. C. (2014). Per-
son Re-Identification. Springer-Verlag London.
Gong, Y., Lazebnik, S., Gordo, A., and Perronnin, F.
(2013). Iterative quantization: A procrustean ap-
proach to learning binary codes for large-scale im-
age retrieval. Journal of IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(12):2916–
2929.
Han, J. and Bhanu, B. (2006). Individual recognition us-
ing gait energy image. Journal of IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
28(2):316–322.
Irie, G., Arai, H., and Tanigushi, Y. (2017). Multimodal
learning of geometry-preserving binary codes for se-
mantic image retrieval. Journal of IEICE Transactions
on Information and Systems, E100.D(4):600–609.
Kawanishi, Y., Deguchi, D., Ide, I., and Murase, H.
(2017). Trajectory ensemble: Multiple persons con-
sensus tracking across non-overlapping multiple cam-
eras over randomly dropped camera networks. In Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 1471–1477.
Khan, F. M. and Br
´
emond, F. (2017). Multi-shot person re-
identification using part appearance mixture. In Pro-
ceedings of IEEE Winter Conference on Applications
of Computer Vision, pages 605–614.
Kobayashi, Y., Hobara, H., and Mochimaru, H. (2015). Aist
gait database 2015. https://www.airc.aist.go.jp/dhrt/
gait2015/index.html.
Layne, R., Hospedales, T. M., and Gong (2012). Person
re-identification by attributes. In Proceedings of the
British Machine Vision Conference, number 24, pages
1–11.
Leng, Q., Ye, M., and Tian, Q. (2020). A survey of open-
world person re-identification. Journal of IEEE Trans-
actions on Circuits and Systems for Video Technology,
30(4):1092–1108.
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., and Hengel,
A. V. D. (2013). A survey of appearance models in vi-
sual object tracking. Journal of ACM Transactions on
Intelligent Systems and Technology, 4(4):58:1–58:48.
Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Hu, Z., Yan, C., and
Yang, Y. (2019). Improving person re-identification
by attribute and identity learning. Journal of Pattern
Recognition, 95:151 – 161.
Lu, W., Kawasaki, S., and Sakuma, J. (2016). Using
fully homomorphic encryption for statistical analysis
of categorical, ordinal and numerical data. In Pro-
ceedings of Network and Distributed System Security
Symposium, pages 201–210.
Ma, X.-Q., Yu, C.-C., Chen, X.-X., and Zhou, L. (2019).
Large-scale person re-identification based on deep
hash learning. Journal of Entropy, 21(5):449.
Morita, K., Yoshimura, H., Nishiyama, M., and Iwai, Y.
(2018). Protecting personal information using homo-
morphic encryption for person re-identification. In
Proceedings of IEEE 7th Global Conference on Con-
sumer Electronics, pages 166–167.
Nakajima, C., Pontil, M., Heisele, B., and Poggio, T.
(2003). Full-body person recognition system. Journal
of Elsevier Pattern Recognition, 36(9):1997–2006.
Nishiyama, M., Nakano, S., Yotsumoto, T., Yoshimura,
H., Iwai, Y., and Sugahara, K. (2016). Person re-
identification using co-occurrence attributes of physi-
cal and adhered human characteristics. In Proceedings
of International Conference on Pattern Recognition,
pages 2085–2090.
Perry, J. and Burnfield, J. M. (2010). Gait Analysis: Normal
and Pathological Function. Slack Inc.
Qayyum, A., Malik, A., M Saad, N., and Mazher, M.
(2019). Designing deep cnn models based on sparse
coding for aerial imagery: a deep-features reduction
approach. Journal of Remote Sensing, 52(1):221–239.
Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A.,
Strehl, A., and Vishwanathan, S. V. N. (2009). Hash
kernels. In Proceedings of International Conference
on Artificial Intelligence and Statistics, volume 5,
pages 496–503.
Shu, G., Dehghan, A., Oreifej, O., Hand, E., and Shah, M.
(2012). Part-based multiple-person tracking with par-
tial occlusion handling. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 1815–1821.
Ullah, A., Muhammad, K., Hussain, T., Baik, S. W., and
De Albuquerque, V. H. C. (2020). Event-oriented 3d
convolutional features selection and hash codes gen-
eration using pca for video retrieval. Journal of IEEE
Access, 8:196529–196540.
Wang, K., Wang, H., Liu, M., Xing, X., and Han, T.
(2018). Survey on person re-identification based on
deep learning. Journal of CAAI Transactions on Intel-
ligence Technology, 3(4):219–227.
Weinberger, K., Dasgupta, A., Attenberg, J., Langford, J.,
and Smola, A. (2009). Feature hashing for large scale
multitask learning. In Proceedings of Annual Interna-
tional Conference on Machine Learning, pages 1113–
1120.
Weinberger, K. Q. and Saul, L. K. (2009). Distance metric
learning for large margin nearest neighbor classifica-
tion. Journal of Machine Learning Research, 10:207–
244.
Wong, Y., Chen, S., Mau, S., Sanderson, C., and Lovell,
B. C. (2011). Patch-based probabilistic image qual-
ity assessment for face selection and improved video-
based face recognition. In Proceedings of IEEE Com-
puter Vision and Pattern Recognition, pages 74–81.
Wu, P., Liu, J., Li, M., Sun, Y., and Shen, F. (2020).
Fast sparse coding networks for anomaly detection in
videos. Journal of Pattern Recognition, 107:107515.
Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., and
Hoi, S. C. C. (2020). Deep learning for person
re-identification: A survey and outlook. CoRR,
abs/2001.04193.
Z. Yang, H. Ai, B. Wu, S. Lao, and L. Cai (2004). Face pose
estimation and its application in video shot selection.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
46