Jaakkola, A., Hyypp
¨
a, J., Hyypp
¨
a, H., and Kukko, A.
(2008). Retrieval algorithms for road surface mod-
elling using laser-based mobile mapping. Sensors,
8:5238–5249.
LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Con-
volutional networks and applications in vision. In Pro-
ceedings of 2010 IEEE international symposium on
circuits and systems, pages 253–256. IEEE.
Li, R. (1997). Mobile mapping: An emerging technology
for spatial data acquisition. Photogrammetric Engi-
neering and Remote Sensing, 63(9):1085–1092.
Ma, L., Li, Y., Li, J., Yu, Y., Junior, J. M., Gonc¸alves, W.,
and Chapman, M. (2020). Capsule-based networks for
road marking extraction and classification from mo-
bile lidar point clouds. IEEE Transactions on Intelli-
gent Transportation Systems, pages 1–15.
Maurer, M., Gerdes, J. C., Lenz, B., Winner, H., et al.
(2016). Autonomous driving. Springer, Berlin.
Meng, X., Wang, L., Silv
´
an-C
´
ardenas, J. L., and Currit, N.
(2009). A multi-directional ground filtering algorithm
for airborne lidar. ISPRS Journal of Photogrammetry
and Remote Sensing, 64(1):117–124.
Mikrut, S., Kohut, P., Pyka, K., Tokarczyk, R., Barszcz, T.,
and Uhl, T. (2016). Mobile laser scanning systems for
measuring the clearance gauge of railways: State of
play, testing and outlook. Sensors, 16(5):683.
Niemeyer, J., Rottensteiner, F., and Soergel, U. (2012).
Conditional random fields for lidar point cloud classi-
fication in complex urban areas. ISPRS annals of the
photogrammetry, remote sensing and spatial informa-
tion sciences, 1(3):263–268.
Pu, S., Rutzinger, M., Vosselman, G., and Elberink, S. O.
(2011). Recognizing basic structures from mobile
laser scanning data for road inventory studies. IS-
PRS Journal of Photogrammetry and Remote Sensing,
66(6):28–39.
Pulli, K., Baksheev, A., Kornyakov, K., and Eruhimov, V.
(2012). Real-time computer vision with opencv. Com-
munications of the ACM, 55(6):61–69.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet:
Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
652–660.
Rabbani, T., Van Den Heuvel, F., and Vosselman, G. (2006).
Segmentation of point clouds using smoothness con-
straint. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences,
36(5):248–253.
Richter, R., Behrens, M., and D
¨
ollner, J. (2013). Object
class segmentation of massive 3d point clouds of ur-
ban areas using point cloud topology. International
Journal of Remote Sensing, 34(23):8408–8424.
Richter, R. and D
¨
ollner, J. (2013). Concepts and techniques
for integration, analysis and visualization of massive
3D point clouds. Computers, Environment and Urban
Systems, 45:114–124.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Sch
¨
utz, M. and Wimmer, M. (2015). High-quality point-
based rendering using fast single-pass interpolation.
In 2015 Digital Heritage, volume 1, pages 369–372.
IEEE.
Schwalbe, E., Maas, H.-G., and Seidel, F. (2005). 3d build-
ing model generation from airborne laser scanner data
using 2d gis data and orthogonal point cloud projec-
tions. Proceedings of ISPRS WG III/3, III/4, 3:12–14.
Vacek, S., Schimmel, C., and Dillmann, R. (2007). Road-
marking analysis for autonomous vehicle guidance. In
EMCR, pages 1–6.
Veit, T., Tarel, J.-P., Nicolle, P., and Charbonnier, P. (2008).
Evaluation of road marking feature extraction. In
2008 11th International IEEE Conference on Intelli-
gent Transportation Systems, pages 174–181. IEEE.
Viola, P., Jones, M., et al. (2001). Rapid object detection
using a boosted cascade of simple features. CVPR (1),
1(511-518):3.
Vosselman, G., Dijkman, E., Reconstruction, K. W. B., Al-
timetry, L., and Transform, H. (2001). 3d building
model reconstruction from point clouds and ground
plans. Int. Arch. of Photogrammetry and Remote Sens-
ing, XXXIV, Part 3/W4:37–43.
Vosselman, G., Gorte, B. G., Sithole, G., and Rabbani,
T. (2004). Recognising structure in laser scanner
point clouds. International archives of photogramme-
try, remote sensing and spatial information sciences,
46(8):33–38.
Wen, C., Sun, X., Li, J., Wang, C., Guo, Y., and Habib, A.
(2019). A deep learning framework for road marking
extraction, classification and completion from mobile
laser scanning point clouds. ISPRS journal of pho-
togrammetry and remote sensing, 147:178–192.
Wolf, J., Richter, R., Discher, S., and D
¨
ollner, J. (2019a).
Applicability of neural networks for image classifica-
tion on object detection in mobile mapping 3d point
clouds. International Archives of the Photogramme-
try, Remote Sensing & Spatial Information Sciences,
42(4/W15):111–115.
Wolf, J., Richter, R., and D
¨
ollner, J. (2019b). Techniques
for automated classification and segregation of mobile
mapping 3d point clouds. In Proceedings of the 14th
International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Appli-
cations, pages 201–208.
Yang, B., Fang, L., Li, Q., and Li, J. (2012). Auto-
mated extraction of road markings from mobile lidar
point clouds. Photogrammetric Engineering & Re-
mote Sensing, 78(4):331–338.
Yu, Y., Li, J., Guan, H., Jia, F., and Wang, C. (2014). Learn-
ing hierarchical features for automated extraction of
road markings from 3-d mobile lidar point clouds.
IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, 8(2):709–726.
Zhang, Z., Liu, Q., and Wang, Y. (2018). Road extraction
by deep residual u-net. IEEE Geoscience and Remote
Sensing Letters, 15(5):749–753.
Zhou, Y. and Tuzel, O. (2018). Voxelnet: End-to-end learn-
ing for point cloud based 3d object detection. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4490–4499.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
234