can have a great impact on the result. While this can
be improved by merging, it would be interesting to see
whether classification can improve results. Finally,
we hope that this approach will yield a new direction
for image segmentation.
ACKNOWLEDGEMENTS
The author would like to thank Nicolas Dugu
´
e for
fruitful discussions regarding clustering algorithms.
REFERENCES
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
S
¨
usstrunk, S. (2012). Slic superpixels compared to
state-of-the-art superpixel methods. IEEE transac-
tions on pattern analysis and machine intelligence,
34(11):2274–2282.
Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2010).
Contour detection and hierarchical image segmenta-
tion. IEEE transactions on pattern analysis and ma-
chine intelligence, 33(5):898–916.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. (2008). Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008.
Browet, A., Absil, P.-A., and Van Dooren, P. (2011). Com-
munity detection for hierarchical image segmentation.
In International Workshop on Combinatorial Image
Analysis, pages 358–371. Springer.
Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A com-
prehensive survey of graph embedding: Problems,
techniques, and applications. IEEE Transactions on
Knowledge and Data Engineering, 30(9):1616–1637.
Cali
´
nski, T. and Harabasz, J. (1974). A dendrite method for
cluster analysis. Communications in Statistics-theory
and Methods, 3(1):1–27.
Christoudias, C. M., Georgescu, B., and Meer, P. (2002).
Synergism in low level vision. In Object recognition
supported by user interaction for service robots, vol-
ume 4, pages 150–155. IEEE.
Davies, D. L. and Bouldin, D. W. (1979). A cluster separa-
tion measure. IEEE transactions on pattern analysis
and machine intelligence, (2):224–227.
Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Effi-
cient graph-based image segmentation. International
journal of computer vision, 59(2):167–181.
Grover, A. and Leskovec, J. (2016). node2vec: Scalable
feature learning for networks. In Proceedings of the
22nd ACM SIGKDD, pages 855–864.
Li, S. and Wu, D. O. (2014). Modularity-based image seg-
mentation. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 25(4):570–581.
Linares, O. A., Botelho, G. M., Rodrigues, F. A., and Neto,
J. B. (2017). Segmentation of large images based on
super-pixels and community detection in graphs. IET
Image Processing, 11(12):1219–1228.
Liu, D., Xiong, Y., Pulli, K., and Shapiro, L. (2011). Esti-
mating image segmentation difficulty. In International
Workshop on Machine Learning and Data Mining in
Pattern Recognition, pages 484–495. Springer.
Meil
ˇ
a, M. (2005). Comparing clusterings: an axiomatic
view. In Proceedings of the 22nd international con-
ference on Machine learning, pages 577–584.
Mourchid, Y., Hassouni, M. E., and Cherifi, H. (2016). An
image segmentation algorithm based on community
detection. In COMPLEX NETWORKS 2016, Milan,
Italy, pages 821–830.
Nguyen, T., Coustaty, M., and Guillaume, J. (2019). A
combination of histogram of oriented gradients and
color features to cooperate with louvain method based
image segmentation. In VISIGRAPP 2019, Volume
4: VISAPP, Prague, Czech Republic, February 25-27,
2019, pages 280–291. SciTePress.
Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trel-
gol Publishing USA.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hog-
wild: A lock-free approach to parallelizing stochastic
gradient descent. In Advances in neural information
processing systems, pages 693–701.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.
Tr
´
emeau, A. and Colantoni, P. (2000). Regions adjacency
graph applied to color image segmentation. IEEE
Transactions on image processing, 9(4):735–744.
Unnikrishnan, R. and Hebert, M. (2005). Measures of
similarity. In 2005 Seventh IEEE Workshops on Ap-
plications of Computer Vision (WACV/MOTION’05)-
Volume 1, volume 1, pages 394–394. IEEE.
Unnikrishnan, R., Pantofaru, C., and Hebert, M. (2007). To-
ward objective evaluation of image segmentation al-
gorithms. IEEE transactions on pattern analysis and
machine intelligence, 29(6):929–944.
Van der Walt, S., Sch
¨
onberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart, E.,
and Yu, T. (2014). scikit-image: image processing in
python. PeerJ, 2:e453.
Ward Jr, J. H. (1963). Hierarchical grouping to optimize an
objective function. Journal of the American statistical
association, 58(301):236–244.
Zhang, H., Fritts, J. E., and Goldman, S. A. (2008). Image
segmentation evaluation: A survey of unsupervised
methods. Computer vision and image understanding,
110(2):260–280.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
252