(2019). Meta-Sim: Learning to Generate Synthetic
Datasets.
Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic
alignments for generating image descriptions. In 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3128–3137. IEEE.
Kim, B., Park, S., Won, T., Heo, J., and Kim, B. (2018a).
Deep-learning based web UI automatic programming.
In Proceedings of the 2018 Conference on Research in
Adaptive and Convergent Systems - RACS ’18, pages
64–65, New York, New York, USA. ACM Press.
Kim, S., Park, J., Jung, J., Eun, S., Yun, Y.-S., So, S., Kim,
B., Min, H., and Heo, J. (2018b). Identifying UI wid-
gets of mobile applications from sketch images. Jour-
nal of Engineering and Applied Sciences, 13(6):1561–
1566.
Landay, J. a. (1995). Interactive sketching for user interface
design. Conference companion on Human factors in
computing systems - CHI ’95, pages 63–64.
Masi, I., Tran, A. T., Leksut, J. T., Hassner, T., and Medioni,
G. (2016). Do We Really Need to Collect Millions of
Faces for Effective Face Recognition?
Moran, K. P., Bernal-Cardenas, C., Curcio, M., Bonett, R.,
and Poshyvanyk, D. (2018). Machine Learning-Based
Prototyping of Graphical User Interfaces for Mobile
Apps. IEEE Transactions on Software Engineering,
5589(May):1–26.
Nguyen, T. A. and Csallner, C. (2015). Reverse Engineering
Mobile Application User Interfaces with REMAUI
(T). In 2015 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 248–259.
Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S.
(2014). CNN Features Off-the-Shelf: An Astounding
Baseline for Recognition. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition Work-
shops, pages 512–519. IEEE.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You Only Look Once: Unified, Real-Time
Object Detection. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
779–788. IEEE.
Redmon, J. U. o. W., Divvala, S. A. I. f. A. I., Girshick, R. F.
A. R., and Farhadi, A. U. o. W. (2017). You Only Look
Once: Unified, Real-Time Object Detection. Annals
of Emergency Medicine, 70(4):S40.
Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-
CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 39(6):1137–
1149.
Suleri, S., Sermuga Pandian, V. P., Shishkovets, S., and
Jarke, M. (2019). Eve. In Extended Abstracts of the
2019 CHI Conference on Human Factors in Comput-
ing Systems - CHI EA ’19, pages 1–6, New York, New
York, USA. ACM Press.
Weichbroth, P. and Sikorski, M. (2015). User Interface
Prototyping. Techniques, Methods and Tools. Studia
Ekonomiczne. Zeszyty Naukowe Uniwersytetu Eko-
nomicznego w Katowicach, 234:184–198.
Wojek, C., Schiele, B., Perona, P., and Doll, P. (2011).
Pedestrian Detection : An Evaluation of the State of
the Art.
You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016).
Image Captioning with Semantic Attention. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4651–4659. IEEE.
Yun, Y.-S., Jung, J., Eun, S., So, S.-S., and Heo, J. (2019a).
Detection of gui elements on sketch images using
object detector based on deep neural networks. In
Hwang, S. O., Tan, S. Y., and Bien, F., editors, Pro-
ceedings of the Sixth International Conference on
Green and Human Information Technology, pages 86–
90, Singapore. Springer Singapore.
Yun, Y.-S., Jung, J., Eun, S., So, S.-S., and Heo, J. (2019b).
Detection of GUI Elements on Sketch Images Us-
ing Object Detector Based on Deep Neural Networks.
In Hwang, S. O., Tan, S. Y., and Bien, F., editors,
Proceedings of the Sixth International Conference on
Green and Human Information Technology, pages 86–
90, Singapore. Springer Singapore.
Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2018). Ob-
ject Detection with Deep Learning: A Review. CoRR,
abs/1807.0.
Zhu, Z., Xue, Z., and Yuan, Z. (2018). Automatic Graphics
Program Generation using Attention-Based Hierarchi-
cal Decoder. CoRR, abs/1810.1.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
58