Fang, H.-S., Lu, G., Fang, X., Xie, J., Tai, Y.-W., and Lu,
C. (2018). Weakly and semi supervised human body
part parsing via pose-guided knowledge transfer. In
Proceedings of the IEEE CVPR.
Fit3D (2020). Ein ber
¨
uhrungsloses erlebnis mit 3d-
k
¨
orperscans.
Freller, A., Turk, D., and Zwettler, G. A. (2020). Using deep
learning for depth estimation and 3d reconstruction of
humans. In Proc. of the 32nd European Modeling and
Simulation Symposium, Vienna, Austria.
Heindl, C., Bauer, H., Ankerl, M., and Pichler, A. (2015).
Reconstructme sdk: a c api for real-time 3d scanning.
In Proc. of the 6th Int. Conf. on 3D Body Scanning
Technologies, Switzerland.
Hidalgo, G. and Fujisaka, Y. (2019). Pose output format
(body 25).
Jacobson, A., Panozzo, D., et al. (2018). li-
bigl: A simple C++ geometry processing library.
https://libigl.github.io/.
Kocabas, M., Athanasiou, N., and Black, M. J. (2019).
Vibe: Video inference for human body pose and shape
estimation.
Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M. J.,
and Gehler, P. V. (2017). Unite the people: Closing
the loop between 3d and 2d human representations.
Li, X., Li, H., Joo, H., Liu, Y., and Sheikh, Y. (2018). Struc-
ture from recurrent motion: From rigidity to recur-
rency.
Lin, H. and Wu, J. (2008). 3d reconstruction by combining
shape from silhouette with stereo. In 2008 19th Int.
Conf. on Pattern Recognition, pages 1–4.
Liu, H., Xu, T., and Wang, X. (2013). Related hog features
for human detection using cascaded adaboost and svm
classifiers. Lecture Notes in Computer Science book
series, 7733.
Liu, T. and Stathaki, T. (2017). Enhanced pedestrian detec-
tion using deep learning based semantic image seg-
mentation. In 2017 22nd Int. Conf. on Digital Signal
Processing (DSP), pages 1–5.
Marchal, G. and Lygren, T. (2017). The microsoft kinect:
validation of a robust and low-cost 3d scanner for bi-
ological science.
Mazareanu, E. R. (2020). statista: Re-
turn deliveries - costs in u.s. 2017-2020.
https://www.statista.com/statistics/871365/reverse-
logistics-cost-united-states, last visited 2020-07-29.
Merkel, D. (2014). Docker: Lightweight linux containers
for consistent development and deployment. Linux J.,
2014(239).
Mulayim, A., Yılmaz, U., and Atalay, M. V. (2003).
Silhouette-based 3-d model reconstruction from mul-
tiple images. IEEE transactions on systems, man, and
cybernetics. Part B, Cybernetics, 33:582–91.
Murphy, T. (2020). Improve conversion rates with your re-
turns policy. https://www.hiplee.com/blog/improve-
conversion-rates-with-your-returns-policy/, last vis-
ited 2020-07-29.
Orendorfff, A. (2019). The plague of ecommerce
return rates and how to maintain profitability.
https://www.shopify.com/enterprise/ecommerce-
returns, last visited 2020-07-29.
Pishchulin, L., Wuhrer, S., Helten, T., Theobalt, C., and
Schiele, B. (2017). Building statistical shape spaces
for 3d human modeling. Pattern Recognition, 67.
Pointner, A., Krauss, O., Freilinger, G., Strieder, D., and
Zwettler, G. A. (2018). Model-based image process-
ing approaches for automated person identification
and authentication in online banking. In Proc. of the
EMSS2018.
Ritter, F., Boskamp, T., Homeyer, A., Laue, H., Schwier,
M., Link, F., and Peitgen, H. . (2011). Medical image
analysis. IEEE Pulse, 2(6):60–70.
Rother, C., Kolmogorov, V., and Blake, A. (2004). ” grab-
cut” interactive foreground extraction using iterated
graph cuts. ACM transactions on graphics (TOG),
23(3):309–314.
Seitz, S. M. and Dyer, C. R. (1999). Photorealistic scene
reconstruction by voxel coloring. Int. Journal of Com-
puter Vision, 35:151–173.
Sizestream (2020). Best-in-class accuracy and speed in a
commercial 3d body scanner customizable platform.
Song, Z., Yu, J., Zhou, C., Tao, D., and Xie, Y. (2013).
Skeleton correspondence construction and its appli-
cations in animation style reusing. Neurocomputing,
120:461 – 468.
Sorkine, O. and Alexa, M. (2007). As-rigid-as-possible sur-
face modeling. In Symposium on Geometry process-
ing, volume 4, pages 109–116.
Statista (2012). Share of online orders that were returned in
2012 (by product category). [Online; accessed August
9, 2020].
Suzuki, S. et al. (1985). Topological structural analy-
sis of digitized binary images by border following.
Computer vision, graphics, and image processing,
30(1):32–46.
Varol, G., Romero, J., Martin, X., Mahmood, N., Black,
M. J., Laptev, I., and Schmid, C. (2017). Learning
from synthetic humans. CoRR, abs/1701.01370.
Wei, G., Lan, C., Zeng, W., and Chen, Z. (2019). View
invariant 3d human pose estimation. CoRR.
Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2017).
Posecnn: A convolutional neural network for 6d
object pose estimation in cluttered scenes. CoRR,
abs/1711.00199.
Yu, Y., Makihara, Y., and Yagi, Y. (2019). Pedestrian
segmentation based on a spatio-temporally consistent
graph-cut with optimal transport. IPSJ Transactions
on Computer Vision and Applications, 11.
Zatsiorsky, V. (1998). Kinematics of human motion. Amer-
ican Journal of Human Biology, 10.
Zeng, D., Chen, X., Zhu, M., Goesele, M., and Kuijper,
A. (2018). Background subtraction with real-time se-
mantic segmentation.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
292