the graphics card, depending on the number of hidden
units used. Future work should deal with reducing
memory consumption.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Man
´
e, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,
Tucker, P., Vanhoucke, V., Vasudevan, V., Vi
´
egas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. (2015). TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. arXiv:1603.04467.
Arjovsky, M. and Bottou, L. (2017). Towards principled
methods for training generative adversarial networks.
arXiv:1701.04862.
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein GAN. arXiv:1701.07875.
Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.
(2000). Image inpainting. In Proceedings of the 27th
annual conference on Computer graphics and inter-
active techniques, pages 417–424.
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020).
YOLOv4: Optimal speed and accuracy of object de-
tection. arXiv:2004.10934.
Bradbury, J., Merity, S., Xiong, C., and Socher, R.
(2016). Quasi-recurrent neural networks. arXiv
arXiv:1611.01576.
Dai, D., Riemenschneider, H., Schmitt, G., and Van Gool,
L. (2013). Example-based facade texture synthesis. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1065–1072.
Dehbi, Y., Staat, C., Mandtler, L., Pl, L., et al. (2016). In-
cremental refinement of facade models with attribute
grammar from 3D point clouds. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences, 3:311.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N. D.,
and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 27, pages 2672–
2680. Curran Associates, Inc.
Graves, A., Fern
´
andez, S., and Schmidhuber, J. (2007).
Multi-dimensional recurrent neural networks. CoRR,
abs/0705.2011.
Gr
¨
oger, G., Kolbe, T. H., and Czerwinski, A. (2007).
OpenGIS CityGML Implementation Specification
(City Geography Markup Language). Open Geospa-
tial Consortium Inc, OGC.
Guillemot, C. and Le Meur, O. (2014). Image inpaint-
ing: Overview and recent advances. Signal Processing
Magazine, IEEE, 31:127–144.
He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017).
Mask R-CNN. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
2961–2969.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778.
Hensel, S., Goebbels, S., and Kada, M. (2019). Fa-
cade reconstruction for textured LoD2 citygml mod-
els based on deep learning and mixed integer linear
programming. ISPRS Annals of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, IV-
2/W5:37–44.
Hu, H., Wang, L., Zhang, M., Ding, Y., and Zhu, Q. (2020).
Fast and regularized reconstruction of building fa-
cades from street-view images using binary integer
programming. ISPRS Annals of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, V-2-
2020:365–371.
Huang, J.-B., Kang, S. B., Ahuja, N., and Kopf, J. (2014).
Image completion using planar structure guidance.
ACM Transactions on graphics (TOG), 33(4):1–10.
Kalchbrenner, N., Danihelka, I., and Graves, A. (2015).
Grid long short-term memory. arXiv:1507.01526.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 2980–2988.
Mtibaa, F., Nguyen, K.-K., Azam, M., Papachristou, A.,
Venne, J.-S., and Cheriet, M. (2020). LSTM-based
indoor air temperature prediction framework for hvac
systems in smart buildings. Neural Computing and
Applications, pages 1–17.
Nazeri, K., Ng, E., Joseph, T., Qureshi, F. Z., and Ebrahimi,
M. (2019). Edgeconnect: Generative image inpainting
with adversarial edge learning. arXiv:1901.00212.
Riemenschneider, H., Krispel, U., Thaller, W., Donoser,
M., Havemann, S., Fellner, D., and Bischof, H.
(2012). Irregular lattices for complex shape grammar
facade parsing. In Proceedings of the 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 1640–1647.
Salehinejad, H., Sankar, S., Barfett, J., Colak, E., and
Valaee, S. (2017). Recent advances in recurrent neural
networks. arXiv:1801.01078.
Sherstinsky, A. (2020). Fundamentals of Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory
(LSTM) network. Physica D: Nonlinear Phenomena,
404:132306.
Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., and
Paragios, N. (2011). Shape grammar parsing via rein-
forcement learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2273–2280. IEEE.
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and
Abbeel, P. (2017). Domain randomization for transfer-
ring deep neural networks from simulation to the real
world. In Proceedings of the 2017 IEEE/RSJ Interna-
LSTM Architectures for Facade Structure Completion
23