Intel (2018). Intel intrinsics guide. https://software.intel.
com/sites/landingpage/IntrinsicsGuide/.
Kretz, M. and Lindenstruth, V. (2012). Vc: A C++ library
for explicit vectorization. Software: Practice and Ex-
perience, 42(11):1409–1430.
Krzikalla, O. and Zitzlsberger, G. (2016). Code Vectorization
Using Intel Array Notation. In Proceedings of the 3rd
Workshop on Programming Models for SIMD/Vector
Processing, WPMVP ’16, pages 6:1–6:8, New York,
NY, USA. ACM.
Kwon, T. and Su, Z. (2011). Modeling high-level behav-
ior patterns for precise similarity analysis of software.
Proceedings - IEEE International Conference on Data
Mining, ICDM, pages 1134–1139.
Lee, J., Petrogalli, F., Hunter, G., and Sato, M. (2017). Ex-
tending OpenMP SIMD Support for Target Specific
Code and Application to ARM SVE. In International
Workshop on OpenMP, pages 62–74. Springer.
Leissa, R., Haffner, I., and Hack, S. (2014). Sierra: A
SIMD Extension for C++. In Proceedings of the 2014
Workshop on Programming Models for SIMD/Vector
Processing, WPMVP ’14, pages 17–24, New York, NY,
USA. ACM.
Lemire, D., Kurz, N., and Rupp, C. (2018). Stream VByte:
Faster byte-oriented integer compression. Information
Processing Letters, 130:1–6.
Li, B., Mooring, J., Blanchard, S., Johri, A., Leko, M., and
Cameron, K. W. (2017). Seemore. J. Parallel Distrib.
Comput., 105(C):183–199.
Lorenzoli, D., Mariani, L., and Pezz
`
e, M. (2008). Automatic
generation of software behavioral models. Proceedings
- International Conference on Software Engineering,
pages 501–510.
MacDonald, L. W. (1999). Using color effectively in com-
puter graphics. IEEE Computer Graphics and Applica-
tions, 19(4):20–35.
Maleki, S., Gao, Y., Garzar
´
an, M. J., Wong, T., and Padua,
D. A. (2011). An evaluation of vectorizing compilers.
In Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques,
PACT ’11, pages 372–382, Washington, DC, USA.
IEEE Computer Society.
McCutchan, J., Feng, H., Matsakis, N., Anderson, Z., and
Jensen, P. (2014). A SIMD Programming Model for
Dart, Javascript,and Other Dynamically Typed Script-
ing Languages. In Proceedings of the 2014 Workshop
on Programming Models for SIMD/Vector Process-
ing, WPMVP ’14, pages 71–78, New York, NY, USA.
ACM.
Muła, W. and Lemire, D. (2018). Faster base64 encoding
and decoding using AVX2 instructions. ACM Trans.
Web, 12(3).
Munzner, T. (2008). Process and pitfalls in writing infor-
mation visualization research papers. Lecture Notes in
Computer Science, 4950 LNCS:134–153.
Munzner, T. (2009). A nested model for visualization design
and validation. IEEE Transactions on Visualization
and Computer Graphics, 15(6):921–928.
Munzner, T. (2014). Visualization Analysis and Design. A
K Peters/CRC Press.
Myers, B. A. (1990). Taxonomies of visual programming and
program visualization. Journal of Visual Languages
and Computing, 1(1):97–123.
Nathan, M. J., Koedinger, K. R., and Alibali, M. W. (2001).
Expert blind spot: When content knowledge eclipses
pedagogical content knowledge. In Proceedings of
the third international conference on cognitive science,
pages 644–648. Beijing: University of Science and
Technology of China Press.
Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams,
K., Yuste, D., Cohen, A., and Zaks, A. (2011). Va-
por simd: Auto-vectorize once, run everywhere. In
International Symposium on Code Generation and Op-
timization, CGO 2011, pages 151–160.
Papenhausen, E., Mueller, K., Langston, M. H., Meister,
B., and Lethin, R. (2016). An interactive visual tool
for code optimization and parallelization based on
the polyhedral model. In Parallel Processing Work-
shops (ICPPW), 2016 45th International Conference
on, pages 309–318. IEEE.
Pohl, A., Cosenza, B., Mesa, M. A., Chi, C. C., and Juurlink,
B. (2016). An evaluation of current simd programming
models for c++. In Proceedings of the 3rd Workshop
on Programming Models for SIMD/Vector Processing,
WPMVP ’16, pages 3:1–3:8, New York, NY, USA.
ACM.
Purchase, H. C., Andrienko, N., Jankun-Kelly, T. J., and
Ward, M. (2008). Theoretical foundations of informa-
tion visualization. Lecture Notes in Computer Science,
4950 LNCS:46–64.
Robertson, G., Fernandez, R., Fisher, D., Lee, B., and Stasko,
J. (2008). Effectiveness of animation in trend visual-
ization. IEEE Transactions on Visualization and Com-
puter Graphics, 14(6):1325–1332.
Sedlmair, M., Meyer, M., and Munzner, T. (2012). Design
study methodology: Reflections from the trenches and
the stacks. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2431–2440.
Steigerwald, B. and Agrawal, A. (2011). Developing Green
Software. Intel White Paper, pages 1–11.
Stringhini, D. and Fazenda, A. (2015). Characterizing com-
munication patterns of parallel programs through graph
visualization and analysis. In European Conference on
Parallel Processing, pages 565–576. Springer.
Stupachenko, E. V. (2015). Programming us-
ing AVX2. Permutations. https://software.
intel.com/content/www/us/en/develop/blogs/
programming-using-avx2-permutations.html?
wapkw=vpunpckl.
Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., and Rosen,
I. (2009). Polyhedral-model guided loop-nest auto-
vectorization. In 18th International Conference on
Parallel Architectures and Compilation Techniques -
Conference Proceedings, PACT, pages 327–337.
Wang, H., Wu, P., Tanase, I. G., Serrano, M. J., and Moreira,
J. E. (2014). Simple, portable and fast SIMD intrinsic
programming: Generic SIMD library. In Proceedings
of the 2014 Workshop on Programming Models for
SIMD/Vector Processing, WPMVP ’14, pages 9–16.
IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications
154