ACKNOWLEDGEMENTS
This work has been supported by the German Federal
Ministry of Education and Research (Project TOPOs).
REFERENCES
Groth, D. and Streefkerk, K. (2006). Provenance and
annotation for visual exploration systems. IEEE
Transactions on Visualization and Computer Graph-
ics, 12(6):1500–1510.
Grundel, B., Bernardeau, M.-A., Langner, H., Schmidt, C.,
B
¨
ohringer, D., Ritter, M., Rosenthal, P., Grandjean,
A., Schulz, S., Daumke, P., and Stahl, A. (2020).
Merkmalsextraktion aus klinischen routinedaten mit-
tels text-mining. Der Ophthalmologe.
Gschwandtner, T., Aigner, W., Miksch, S., G
¨
artner, J.,
Kriglstein, S., Pohl, M., and Suchy, N. (2014). Time-
Cleanser: A Visual Analytics Approach for Data
Cleansing of Time-Oriented Data. In Proceedings of
the i-KNOW ’14.
Gschwandtner, T., G
¨
artner, J., Aigner, W., and Miksch,
S. (2012). A taxonomy of dirty time-oriented data.
In Multidisciplinary Research and Practice for In-
formation Systems, pages 58–72, Berlin, Heidelberg.
Springer.
Heer, J., Vi
´
egas, F. B., and Wattenberg, M. (2007). Voy-
agers and voyeurs: Supporting asynchronous collabo-
rative information visualization. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’07, pages 1029–1038, New York, NY,
USA.
Jin, Y., Li, J., Ma, D., Guo, X., and Yu, H. (2017). A semi-
automatic annotation technology for traffic scene im-
age labeling based on deep learning preprocessing. In
2017 IEEE International CSE and IEEE International
Confernece on EUC, pages 315–320.
Kr
¨
uger, R., Herr, D., Haag, F., and Ertl, T. (2015). Inspec-
tor Gadget: Integrating Data Preprocessing and Or-
chestration in the Visual Analysis Loop. In EuroVis
Workshop on Visual Analytics (EuroVA).
Krishnan, S., Haas, D., Franklin, M. J., and Wu, E. (2016).
Towards reliable interactive data cleaning: A user
survey and recommendations. In Proceedings of
the Workshop on Human-In-the-Loop Data Analytics,
pages 9:1–9:5, New York, NY, USA. ACM.
Lakiotaki, K., Vorniotakis, N., Tsagris, M., Georgakopou-
los, G., and Tsamardinos, I. (2018). BioDataome:
a collection of uniformly preprocessed and auto-
matically annotated datasets for data-driven biology.
Database, 2018.
Lipford, H. R., Stukes, F., Dou, W., Hawkins, M. E., and
Chang, R. (2010). Helping users recall their reasoning
process. In 2010 IEEE Symposium on Visual Analytics
Science and Technology, pages 187–194.
Mahyar, N., Sarvghad, A., and Tory, M. (2012). Note-
taking in co-located collaborative visual analytics:
Analysis of an observational study. Information Vi-
sualization, 11:190–204.
Mahyar, N. and Tory, M. (2014). Supporting communi-
cation and coordination in collaborative sensemak-
ing. IEEE Transactions on Visualization and Com-
puter Graphics, 20:1633–1642.
McCurdy, N., Gerdes, J., and Meyer, M. (2019). A frame-
work for externalizing implicit error using visualiza-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 25:925–935.
M
¨
uller, H. and Freytag, J. C. (2003). Problems, meth-
ods, and challenges in comprehensive data cleansing.
Humboldt-Universit
¨
at zu Berlin, 10099.
Sacha, D., Stoffel, A., Stoffel, F., Kwon, B. C., Ellis, G., and
Keim, D. A. (2014). Knowledge generation model for
visual analytics. IEEE Transactions on Visualization
and Computer Graphics, 20:1604–1613.
Saur
´
ı, R. (2017). Building FactBank or How to Annotate
Event Factuality One Step at a Time, pages 905–939.
Springer Netherlands, Dordrecht.
Schmidt, C., R
¨
ohlig, M., Grundel, B., Daumke, P., Rit-
ter, M., Stahl, A., Rosenthal, P., and Schumann, H.
(2019). Combining visual cleansing and exploration
for clinical data. In 2019 IEEE Workshop on Visual
Analytics in Healthcare (VAHC), pages 25–32.
Schmidt, C., Rosenthal, P., and Schumann, H. (2018). An-
notations as a support for knowledge generation - sup-
porting visual analytics in the field of ophthalmology.
In Proceedings of the 13
th
International Joint Con-
ference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, pages 264–272.
SCITEPRESS - Science and Technology Publications.
Shabana, K. M. and Wilson, J. (2015). A novel method for
automatic discovery, annotation and interactive visu-
alization of prominent clusters in mobile subscriber
datasets. In 2015 IEEE 9
th
International Confer-
ence on Research Challenges in Information Science
(RCIS), pages 127–132.
Vanhulst, P.,
´
Ev
´
equoz, F., Tuor, R., and Lalanne, D. (2018).
Designing a classification for user-authored annota-
tions in data visualization. In Proceedings of the
13th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and
Applications - Volume 2 : IVAPP,, pages 85–96.
SCITEPRESS - Science and Technology Publications.
Willett, W., Heer, J., Hellerstein, J., and Agrawala, M.
(2011). Commentspace: Structured support for col-
laborative visual analysis. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 3131–3140. ACM.
Zhao, J., Gl uck, M., Isenberg, P., Chevalier, F., and
Khan, A. (2018). Supporting handoff in asynchronous
collaborative sensemaking using knowledge-transfer
graphs. IEEE Transactions on Visualization and Com-
puter Graphics, 24:340–350.
Zhao, J., Glueck, M., Breslav, S., Chevalier, F., and Khan,
A. (2017). Annotation graphs: A graph-based vi-
sualization for meta-analysis of data based on user-
authored annotations. IEEE Transactions on Visual-
ization and Computer Graphics, 23:261–270.
Annotations in Different Steps of Visual Analytics
163