ACKNOWLEDGEMENT
This research is supported by the IIT Ropar under
ISIRD grant 9-231/2016/IIT-RPR/1395 and by the
DST under CSRI grant DST/CSRI/2018/234.
REFERENCES
Choi, J., Jung, S., Park, D. G., Choo, J., and Elmqvist, N.
(2019). Visualizing for the non-visual: Enabling the
visually impaired to use visualization. In Computer
Graphics Forum, volume 38, pages 249–260. Wiley
Online Library.
Cliche, M., Rosenberg, D., Madeka, D., and Yee, C. (2017).
Scatteract: Automated extraction of data from scat-
ter plots. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 135–150. Springer.
Duda, R. O. and Hart, P. E. (1972). Use of the hough trans-
formation to detect lines and curves in pictures. Com-
munications of the ACM, 15(1):11–15.
Elzer, S., Schwartz, E., Carberry, S., Chester, D., Demir,
S., and Wu, P. (2007). A browser extension for pro-
viding visually impaired users access to the content of
bar charts on the web. In WEBIST (2), pages 59–66.
Citeseer.
Goncu, C. and Marriott, K. (2012). Accessible graphics:
graphics for vision impaired people. In International
Conference on Theory and Application of Diagrams,
pages 6–6. Springer.
GraphicsAccelerator, S. (2020). Product-specific resources.
Gross, A., Schirm, S., and Scholz, M. (2014). Ycasd–a tool
for capturing and scaling data from graphical repre-
sentations. BMC bioinformatics, 15(1):219.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Huang, W. and Tan, C. L. (2007). A system for understand-
ing imaged infographics and its applications. In Pro-
ceedings of the 2007 ACM symposium on Document
engineering, pages 9–18. ACM.
Jung, D., Kim, W., Song, H., Hwang, J.-i., Lee, B., Kim,
B., and Seo, J. (2017). Chartsense: Interactive data
extraction from chart images. In Proceedings of the
2017 CHI Conference on Human Factors in Comput-
ing Systems, pages 6706–6717. ACM.
Junior, P. R. S. C., De Freitas, A. A., Akiyama, R. D., Mi-
randa, B. P., De Ara
´
ujo, T. D. O., Dos Santos, C. G. R.,
Meiguins, B. S., and De Morais, J. M. (2017). Archi-
tecture proposal for data extraction of chart images us-
ing convolutional neural network. In 2017 21st Inter-
national Conference Information Visualisation (IV),
pages 318–323. IEEE.
Kafle, K., Price, B., Cohen, S., and Kanan, C. (2018).
Dvqa: Understanding data visualizations via question
answering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
5648–5656.
Kahou, S. E., Michalski, V., Atkinson, A., K
´
ad
´
ar,
´
A.,
Trischler, A., and Bengio, Y. (2017). Figureqa: An
annotated figure dataset for visual reasoning. arXiv
preprint arXiv:1710.07300.
Kay, A. (2007). Tesseract: An open-source optical character
recognition engine. Linux J., 2007(159):2.
McCarthy, T., Pal, J., Cutrell, E., and Marballi, T. (2012).
An analysis of screen reader use in india. In Proceed-
ings of ICTD 2012, the 5th ACM/IEEE International
Conference on Information and Communication Tech-
nologies and Development. ACM.
M
´
endez, G. G., Nacenta, M. A., and Vandenheste, S.
(2016). ivolver: Interactive visual language for vi-
sualization extraction and reconstruction. In Proceed-
ings of the 2016 CHI Conference on Human Factors
in Computing Systems, pages 4073–4085. ACM.
Nair, R. R., Sankaran, N., Nwogu, I., and Govindaraju,
V. (2015). Automated analysis of line plots in doc-
uments. In Document Analysis and Recognition (IC-
DAR), 2015 13th International Conference on, pages
796–800. IEEE.
Nazemi, A. and Murray, I. (2013). A method to provide ac-
cessibility for visual components to vision impaired.
International Journal of Human Computer Interaction
(IJHCI), 4(1):54.
Poco, J. and Heer, J. (2017). Reverse-engineering visual-
izations: Recovering visual encodings from chart im-
ages. In Computer Graphics Forum, volume 36, pages
353–363. Wiley Online Library.
Rohatgi, A. (2014). Web plot digitizer. ht tp. arohatgi.
info/WebPlotDigitizer/app/(accessed June, 2.
Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala,
M., and Heer, J. (2011). Revision: Automated clas-
sification, analysis and redesign of chart images. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology, pages 393–
402. ACM.
Siegel, N., Horvitz, Z., Levin, R., Divvala, S., and Farhadi,
A. (2016). Figureseer: Parsing result-figures in re-
search papers. In European Conference on Computer
Vision, pages 664–680. Springer.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
318