and Naghavi, M. (2017). Global Skin Disease Mor-
bidity and Mortality: An Update From the Global
Burden of Disease Study 2013. JAMA Dermatology,
153(5):406–412.
Kiwanuka, F. N., Ouzounis, G. K., and Wilkinson, M. H.
(2009a). Surface-area-based attribute filtering in 3d.
In Proceedings of the 9th ISMM ’09, pages 70–81,
Berlin, Heidelberg. Springer-Verlag.
Kiwanuka, F. N., Ouzounis, G. K., and Wilkinson, M. H.
(2009b). Surface-area-based attribute filtering in 3d.
In Proceedings of the 9th ISMM ’09, pages 70–81,
Berlin, Heidelberg. Springer-Verlag.
Kiwanuka, F. N. and Wilkinson, M. (2015). Cluster based
vector attribute filtering. In ISMM.
Kiwanuka, F. N. and Wilkinson, M. H. F. (2010). Ra-
dial moment invariants for attribute filtering in 3D.
In K
¨
athe, U., Montanvert, A., and Soille, P., editors,
Proc. Workshop on Applications of Discrete Geometry
and Mathematical Morphology (WADGMM), pages
37–41.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc.
Liao, H., Li, Y., and Luo, J. (2018). Skin disease classifica-
tion versus skin lesion characterization: Achieving ro-
bust diagnosis using multi-label deep neural networks.
CoRR, abs/1812.03520.
Meijster, A. and Wilkinson, M. H. F. (2002). A comparison
of algorithms for connected set openings and closings.
IEEE Trans. Pattern Anal. Mach. Intell., 24(4):484–
494.
Mennillo, L., Cousty, J., and Najman, L. (2015). A com-
parison of some morphological filters for improving
ocr performance. In Benediktsson, J. A., Chanussot,
J., Najman, L., and Talbot, H., editors, Mathematical
Morphology and Its Applications to Signal and Image
Processing, volume 9082 of Lecture Notes in Com-
puter Science, pages 134–145. Springer International
Publishing.
Ouzounis, G. K. and Wilkinson, M. H. F. (2011). Hyper-
connected attribute filters based on k-flat zones. IEEE
Trans. Pattern Anal. Mach. Intell., 33(2):224–239.
Pomponiu, V., Nejati, H., and Cheung, N. . (2016). Deep-
mole: Deep neural networks for skin mole lesion clas-
sification. In 2016 IEEE International Conference on
Image Processing (ICIP), pages 2623–2627.
Quinn, J. A., Munabi, I., and Kiwanuka, F. N. (2014). Auto-
mated blood smear analysis for mobile malaria diag-
nosis. In In W. Karlen and K. Iniewski, editors, Mobile
Point-of-Care Monitors and Diagnostic Devices. CRC
Press 2014.
Romero-Lopez, A., Burdick, J., i Nieto, X. G., and Mar-
ques, O. (2017). Skin lesion classification from der-
moscopic images using deep learning.
Salembier, P. (2015). Study of binary partition tree pruning
techniques for polarimetric sar images. In Benedik-
tsson, J. A., Chanussot, J., Najman, L., and Talbot,
H., editors, Mathematical Morphology and Its Appli-
cations to Signal and Image Processing, volume 9082
of Lecture Notes in Computer Science, pages 51–62.
Springer International Publishing.
Salembier, P., Oliveras, A., and Garrido, L. (1998). Anti-
extensive connected operators for image and sequence
processing. IEEE Trans. Image Proc., 7:555–570.
Salembier, P. and Serra, J. (1995). Flat zones filtering, con-
nected operators, and filters by reconstruction. IEEE
Transactions on Image Processing, 4:1153–1160.
Salembier, P. and Wilkinson, M. H. F. (2009). Connected
operators: A review of region-based morphological
image processing techniques. IEEE Signal Process-
ing Magazine, 26(6):136–157.
Serra, J. (1998). Connectivity on complete lattices. J. Math.
Imag. Vis., 9(3):231–251.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions.
Soille, P. (2008). Constrained connectivity and connected
filters. IEEE Trans. Pattern Anal. Mach. Intell.,
30(7):1132–1145.
Sun, X., Yang, J., Sun, M., and Wang, K. (2016). A
benchmark for automatic visual classification of clin-
ical skin disease images. In ECCV.
Urbach, E. (2015). Intelligent object detection using trees.
In Benediktsson, J. A., Chanussot, J., Najman, L., and
Talbot, H., editors, Mathematical Morphology and Its
Applications to Signal and Image Processing, volume
9082 of Lecture Notes in Computer Science, pages
289–300. Springer International Publishing.
Urbach, E. R., Roerdink, J. B. T. M., and Wilkinson, M.
H. F. (2007). Connected shape-size pattern spectra
for rotation and scale-invariant classification of gray-
scale images. IEEE Trans. Pattern Anal. Mach. Intell.,
29:272–285.
van de Gronde, J. and Roerdink, J. (2014). Group-invariant
colour morphology based on frames. Image Process-
ing, IEEE Transactions on, 23(3):1276–1288.
Westenberg, M. A., Roerdink, J. B. T. M., and Wilkinson,
M. H. F. (2007). Volumetric attribute filtering and in-
teractive visualization using the max-tree representa-
tion. IEEE Trans. Image Proc., 16:2943–2952.
Wilkinson, M. H. F. (2011). A fast component-tree algo-
rithm for high dynamic-range images and second gen-
eration connectivity. In Proc. Int. Conf. Image Proc.
2011, pages 1041–1044.
Tropical Skin Disease Classification using Connected Attribute Filters
345