Future work is still required to optimize the
performance of this algorithm when processing
complex scenes. This algorithm offers an alternative
solution suitable for use in bit constrained
environments.
REFERENCES
Mattavelli, Marco, Jorn W. Janneck, and Mickaël Raulet,
2019. "MPEG reconfigurable video coding."
In Handbook of signal processing systems, pp. 213-
249. Springer, Cham, 2019.
Hsu, S., & Anandan, P., 1996. Hierarchical representations
for mosaic-based video compression. In Proc. Picture
Coding Symp (Vol. 395).
Irani, M., & Anandan, P., 1998. Video indexing based on
mosaic representations. Proceedings of the IEEE,
86(5), 905-921.
ITU-T Rec. H.263 (01 /2005) Video Coding For Low Bit
Rate Communications
Sullivan, Gary J., and Thomas Wiegand, 2005. "Video
compression-from concepts to the H. 264/AVC
standard." Proceedings of the IEEE 93, no. 1 (2005):
18-31.
Paul, Manoranjan, Manzur Murshed, and Laurence Dooley,
2003. "An arbitrary shaped pattern selection algorithm
for very low bit-rate video coding focusing on moving
regions." Proc. of 4th IEEE Pacific-Rim Int. Con. on
Multimedia (PCM-03), Singapore (2003).
Murshed, M., Manoranjan, P., 2004. Pattern Identification
VLC for Pattern-based Video Coding using Co-
occurrence Matrix. In: International Conference on
Computer Science, Software Engineering, Information
Technology, e-Business & Applications, Egypt (2004)
Galpin, Franck, Raphaele Balter, Luce Morin, and Stéphane
Pateux, 2004. "Efficient and scalable video
compression by automatic 3d model building using
computer vision." In Picture Coding Symposium,
PCS’2004, San Francisco, USA. 2004.
Balter, Raphale, Patrick Gioia, and Luce Morin, 2006.
"Scalable and efficient video coding using 3-d
modeling." IEEE Transactions on Multimedia 8, no. 6
(2006): 1147-1155.
Liu, Dong, Yue Li, Jianping Lin, Houqiang Li, and Feng
Wu, 2020. "Deep learning-based video coding: A
review and a case study." ACM Computing Surveys
(CSUR) 53, no. 1 (2020): 1-35.
Claude Elwood Shannon, 1948. A mathematical theory of
communication. Bell System Technical Journal 27, 3
(1948), 379–423.
Zhibo Chen, Tianyu He, Xin Jin, and Feng Wu., 2019.
Learning for video compression. IEEE Transactions on
Circuits and Systems for Video Technology.
DOI:10.1109/TCSVT.2019.2892608
Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl.,
2018. Video compression through image interpolation.
In ECCV. 416–431.
Tong Chen, Haojie Liu, Qiu Shen, Tao Yue, Xun Cao, and
Zhan Ma., 2017. DeepCoder: A deep neural network-
based video compression. In VCIP. IEEE, 1–4.
Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei
Cai, and Zhiyong Gao., 2019. DVC: An end-to-end
deep video compression framework. In CVPR. 11006–
11015.
Jiahao Li, Bin Li, Jizheng Xu, Ruiqin Xiong, and Wen
Gao., 2018. Fully connected network-based intra
prediction for image coding. IEEE Transactions on
Image Processing
27, 7 (2018), 3236–3247.
Yueyu Hu, Wenhan Yang, Mading Li, and Jiaying Liu.,
2019. Progressive spatial recurrent neural network for
intra prediction. IEEE Transactions on Multimedia 21,
12 (2019), 3024 – 3037.
DOI:10.1109/TMM.2019.2920603
Jianping Lin, Dong Liu, Houqiang Li, and Feng Wu., 2018.
Generative adversarial network-based frame
extrapolation for video coding. In VCIP. 1–4.
Lei Zhao, Shiqi Wang, Xinfeng Zhang, Shanshe Wang,
Siwei Ma, and Wen Gao., 2019. Enhanced motion-
compensated video coding with deep virtual reference
frame generation. IEEE Transactions on Image
Processing 28, 10 (2019), 4832–4844.
Cucchiara, R., Grana, C., Piccardi, M., & Prati, A., 2003.
Detecting moving objects, ghosts, and shadows in video
streams. IEEE transactions on pattern analysis and
machine intelligence, 25(10), 1337-1342.
Calderara, S., Melli, R., Prati, A., & Cucchiara, R., 2006.
Reliable background suppression for complex scenes.
In Proceedings of the 4th ACM international workshop
on Video surveillance and sensor networks (pp. 211-
214). ACM.
Prati, A., Mikic, I., Grana, C., & Trivedi, M. M., 2001.
Shadow detection algorithms for traffic flow analysis: a
comparative study. In ITSC 2001. 2001 IEEE
Intelligent Transportation Systems. Proceedings (Cat.
No. 01TH8585) (pp. 340-345). IEEE.
Khan, S., & Shah, M., 2001. Object based segmentation of
video using color, motion and spatial information. In
Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition. CVPR 2001 (Vol. 2, pp. II-II). IEEE.
Chang, M. M., Tekalp, A. M., & Sezan, M. I., 1997.
Simultaneous motion estimation and segmentation.
IEEE transactions on image processing, 6(9), 1326-
1333.
Kuhn, H. W., 1955. The Hungarian method for the
assignment problem. Naval research logistics
quarterly, 2(1‐2), 83-97.
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.,
2004. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image
processing, 13(4), 600-612.
Hore, A., & Ziou, D., 2010. Image quality metrics: PSNR
vs. SSIM. In 2010 20th International Conference on
Pattern Recognition (pp. 2366-2369). IEEE.