Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu,
L., Sorri, I., Raninen, A., Voutilainen, R., Pietila ̈, J.,
Ka ̈lvia ̈inen, H., Uusitalo, H., 2007. The DI-
ARETDB1 diabetic retinopathy database and
evaluation protocol. In: Proc BMVC. Warwik, UK.
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
& Belongie, S. (2017). Feature pyramid networks for
object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (pp. 2117-2125).
Liu Q., Zou B., Chen J., Ke W., Yue K., Chen Z., and Zhao
G., “A location-to-segmentation strategy for automatic
exudate segmentation in colour retinal fundus images,”
Computerized Medical Imaging and Graphics, vol. 55,
pp. 78–86, 2017.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully
convolutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 3431-3440).
Mane V., Kawadiwale R., and Jadhav D., “Detection of red
lesions in diabetic retinopathy affected fundus images,”
in IEEE Inter- national Advance Computing
Conference (IACC), 2015, pp. 56–60.
Orlando, J. I., Prokofyeva, E., del Fresno, M., & Blaschko,
M. B. (2018). An ensemble deep learning based
approach for red lesion detection in fundus images.
Computer methods and programs in biomedicine, 153,
115-127.
Porwal, Prasanna, S. P. R. K. M. K. G. D. V. S. and
Meriaudeau, F., “Indian diabetic retinopathy image
dataset (idrid).,” IEEE Dataport. (2019).
Prentašić, P., & Lončarić, S. (2015). Detection of exudates
in fundus photographs using convolutional neural
networks. In 2015 9th International Symposium on
Image and Signal Processing and Analysis (ISPA) (pp.
188-192).
Quellec, G., Charrière, K., Boudi, Y., Cochener, B., &
Lamard, M. (2017). Deep image mining for diabetic
retinopathy screening. Medical image analysis, 39, 178-
193.
Qureshi, I., Ma, J., & Abbas, Q. (2019). Recent
development on detection methods for the diagnosis of
diabetic retinopathy. Symmetry, 11(6), 749.
Raman, R., Srinivasan, S., Virmani, S., Sivaprasad, S., Rao,
C., & Rajalakshmi, R. (2019). Fundus photograph-
based deep learning algorithms in detecting diabetic
retinopathy. Eye, 33(1), 97-109.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net:
Convolutional networks for biomedical image
segmentation. In International Conference on Medical
image computing and computer-assisted intervention
(pp. 234-241). Springer, Cham.
Salehi, S., Erdogmus D., and Gholipour A., “Tversky loss
function for image segmen- tation using 3d fully
convolutional deep networks,” in International
Workshop on Machine Learning in Medical Imaging,
379–387, Springer (2017).
Sánchez, C., Niemeijer, M., Išgum, I., Dumitrescu, A.,
Suttorp-Schulten, M., Abràmoff, M., van Ginneken, B.,
2012. Contextual computer-aided detection: Improving
bright lesion detection in retinal images and coronary
calcification identification in ct scans. Med. Image
Anal. 16 (1), 50–62.
Shan, J., & Li, L. (2016). A deep learning method for
microaneurysm detection in fundus images. In 2016
IEEE First International Conference on Connected
Health: Applications, Systems and Engineering
Technologies (CHASE) (pp. 357-358).
Simonyan, Karen, and Andrew Zisserman. "Very deep
convolutional networks for large-scale image
recognition." arXiv preprint arXiv:1409.1556 (2014).
Tiu E., “Metrics to evaluate your semantic segmentation
model. (2019). [URL Accessed 8/2019]. URL:
https://towardsdatascience.com /metrics-to-evaluate-
your-semantic-segmentation-model-6bcb99639aa2.
Van Grinsven, M. J., van Ginneken, B., Hoyng, C. B.,
Theelen, T., & Sánchez, C. I. (2016). Fast convolutional
neural network training using selective data sampling:
Application to hemorrhage detection in color fundus
images. IEEE transactions on medical imaging, 35(5),
1273-1284.
Wilkinson C., Ferris F., Klein R.,et al. (2003). Proposed
international clinical diabetic retinopathy and diabetic
macular edema disease severity scales, in
Ophthalmology110(9),1677–1682 (2003).
Yu, H., Yang, Z., Tan, L., Wang, Y., Sun, W., Sun, M., &
Tang, Y. (2018). Methods and datasets on semantic
segmentation: A review. Neurocomputing, 304, 82-
103.
Zhang, X., Thibault, G., Decencière, E., Marcotegui, B.,
Laÿ, B., Danno, R. & Chabouis, A. et al. (2014).
Exudate detection in color retinal images for mass
screening of diabetic retinopathy. Medical image
analysis, 18(7), 1026-1043.
Zhou L., Li P., Yu Q., Qiao Y., and Yang J., “Automatic
hemorrhage detection in color fundus images based on
gradual removal of vascu- lar branches,” in IEEE
International Conference on Image Processing (ICIP),
2016, pp. 399–403.