Our current framework provides two different
ways for boundary optimization. In the future, it will
be more ideal to have an automatic way to decide
the proper boundary optimization based on the input
mesh configuration without user intervention.
ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable
feedback. This research was partially supported by
NSF IIS 1553329.
REFERENCES
Ben-Chen, M., Gotsman, C., and Bunin, G. (2008). Con-
formal flattening by curvature prescription and metric
scaling. In Computer Graphics Forum, volume 27,
pages 449–458. Wiley Online Library.
Bommes, D., L
´
evy, B., Pietroni, N., Puppo, E., Silva, C.,
Tarini, M., and Zorin, D. (2013). Quad-mesh gener-
ation and processing: A survey. In Computer Graph-
ics Forum, volume 32, pages 51–76. Wiley Online Li-
brary.
Bommes, D., Zimmer, H., and Kobbelt, L. (2009). Mixed-
integer quadrangulation. ACM Trans. Graph., 28(3).
Brewer, M. L., Diachin, L. F., Knupp, P. M., Leurent, T.,
and Melander, D. J. (2003). The Mesquite Mesh Qual-
ity Improvement Toolkit. In Shepherd, J., editor, IMR.
Campen, M. (2017). Partitioning surfaces into quadrilat-
eral patches: a survey. In Computer Graphics Forum,
volume 36, pages 567–588. Wiley Online Library.
Canann, S. A., Tristano, J. R., Staten, M. L., et al. (1998).
An approach to combined laplacian and optimization-
based smoothing for triangular, quadrilateral, and
quad-dominant meshes. In IMR, pages 479–494. Cite-
seer.
Daniels, J., Silva, C. T., and Cohen, E. (2009). Localized
quadrilateral coarsening. In Computer Graphics Fo-
rum, volume 28, pages 1437–1444. Wiley Online Li-
brary.
Docampo-Sanchez, J. and Haimes, R. (2019). Towards fully
regular quad mesh generation. In AIAA Scitech 2019
Forum, page 1988.
Fang, X., Bao, H., Tong, Y., Desbrun, M., and
Huang, J. (2018). Quadrangulation through morse-
parameterization hybridization. ACM Transactions on
Graphics (TOG), 37(4):92.
Gao, X., Deng, Z., and Chen, G. (2015). Hexahedral mesh
re-parameterization from aligned base-complex. ACM
Transactions on Graphics (TOG), 34(4):1–10.
Gao, X., Huang, J., Xu, K., Pan, Z., Deng, Z., and Chen,
G. (2017). Evaluating hex-mesh quality metrics via
correlation analysis. In Computer Graphics Forum,
volume 36, pages 105–116. Wiley Online Library.
Ji, Z., Liu, L., and Wang, G. (2005). A global lapla-
cian smoothing approach with feature preservation. In
Ninth International Conference on Computer Aided
Design and Computer Graphics (CAD-CG’05), pages
6–pp. IEEE.
Kim, J., Choi, J., and Kang, W. (2020). A data-driven ap-
proach for simultaneous mesh untangling and smooth-
ing using pointer networks. IEEE Access, 8:70329–
70342.
Kim, J., Shin, M., and Kang, W. (2015). A derivative-
free mesh optimization algorithm for mesh quality im-
provement and untangling. Mathematical Problems in
Engineering, 2015.
P
´
ebay, P. P., Thompson, D. C., Shepherd, J., Knupp, P. M.,
Lisle, C., Magnotta, V., and Grosland, N. M. (2007).
New Applications of the Verdict Library for Standard-
ized Mesh Verification Pre, Post, and End-to-End Pro-
cessing. In Brewer, M. L. and Marcum, D. L., editors,
IMR, pages 535–552. Springer.
Pietroni, N., Tarini, M., and Cignoni, P. (2009). Almost
isometric mesh parameterization through abstract do-
mains. IEEE Transactions on Visualization and Com-
puter Graphics, 16(4):621–635.
Prasad, T. (2018). A comparative study of mesh smooth-
ing methods with flipping in 2D and 3D. PhD thesis,
Rutgers University-Camden Graduate School.
Sorkine, O. (2005). Laplacian Mesh Processing. In
Chrysanthou, Y. and Magnor, M., editors, Eurograph-
ics 2005 - State of the Art Reports. The Eurographics
Association.
Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and
Puppo, E. (2010). Practical quad mesh simplification.
In Computer Graphics Forum, volume 29, pages 407–
418. Wiley Online Library.
Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and
Cignoni, P. (2011). Simple quad domains for field
aligned mesh parametrization. In Proceedings of the
2011 SIGGRAPH Asia Conference, pages 1–12.
Vartziotis, D. and Himpel, B. (2014). Laplacian smoothing
revisited. arXiv preprint arXiv:1406.4333.
Viertel, R. and Osting, B. (2019). An approach to quad
meshing based on harmonic cross-valued maps and
the ginzburg–landau theory. SIAM Journal on Scien-
tific Computing, 41(1):A452–A479.
Xu, H. and Newman, T. S. (2005). 2d fe quad mesh smooth-
ing via angle-based optimization. In International
Conference on Computational Science, pages 9–16.
Springer.
Xu, K., Gao, X., and Chen, G. (2018). Hexahedral
mesh quality improvement via edge-angle optimiza-
tion. Computers & Graphics, 70:17–27.
Zhang, Y., Bajaj, C. L., and Xu, G. (2005). Surface
Smoothing and Quality Improvement of Quadrilat-
eral/Hexahedral Meshes with Geometric Flow. In
Hanks, B. W., editor, IMR, pages 449–468. Springer.
Zhou, T. and Shimada, K. (2000). An angle-based approach
to two-dimensional mesh smoothing. IMR, 2000:373–
384.
GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications
184