ical elements and nine codons for encoding four non-
canonical amino acids. The proposed extended codes
can be useful in designing artificial codes encoding
new amino acid with specific properties, which can
find application in various branches of biotechnology
and synthetic biology.
5 FUNDING STATEMENT
This work was supported by the National Science
Centre, Poland (Narodowe Centrum Nauki, Polska)
under Grant number 2017/27/N/NZ2/00403.
REFERENCES
Aloqalaa, D. A., Kowalski, D. R., Blazej, P., Wnetrzak, M.,
Mackiewicz, D., and Mackiewicz, P. (2019). The im-
pact of the transversion/transition ratio on the opti-
mal genetic code graph partition. In Proceedings of
the 12th International Joint Conference on Biomedi-
cal Engineering Systems and Technologies (BIOSTEC
2019) - Volume 3: BIOINFORMATICS, pages 55–65.
Anderson, J. C., Wu, N., Santoro, S. W., Lakshman, V.,
King, D. S., and Schultz, P. G. (2004). An expanded
genetic code with a functional quadruplet codon. Proc
Natl Acad Sci U S A, 101(20):7566–7571.
Bezrukov, S. L. (1999). Edge isoperimetic problems on
graphs., volume 7, pages 157–197. Akademia Kiado,
Budapest.
Bła
˙
zej, P., Kowalski, D., Mackiewicz, D., Wnetrzak,
M., Aloqalaa, D., and Mackiewicz, P.
(2018a). The structure of the genetic code
as an optimal graph clustering problem.
www.biorxiv.org/content/early/2018/05/28/332478.
Bła
˙
zej, P., Mackiewicz, D., Grabinska, M., Wnetrzak, M.,
and Mackiewicz, P. (2017). Optimization of amino
acid replacement costs by mutational pressure in bac-
terial genomes. Scientific Reports, 7:1061.
Bła
˙
zej, P., Miasojedow, B., Grabinska, M., and Mack-
iewicz, P. (2015). Optimization of mutation pressure
in relation to properties of protein-coding sequences
in bacterial genomes. PLoS One, 10:e0130411.
Bła
˙
zej, P., Wnetrzak, M., Mackiewicz, D., Gagat, P., and
Mackiewicz, P. (2019a). Many alternative and theo-
retical genetic codes are more robust to amino acid
replacements than the standard genetic code. Journal
of Theoretical Biology, 464:21–32.
Bła
˙
zej, P., Wnetrzak, M., Mackiewicz, D., and Mackiewicz,
P. (2018b). Optimization of the standard genetic code
according to three codon positions using an evolution-
ary algorithm. PLoS One, 13(8):e0201715.
Bła
˙
zej, P., Wnetrzak, M., Mackiewicz, D., and Mackiewicz,
P. (2019b). The influence of different types of transla-
tional inaccuracies on the genetic code structure. BMC
Bioinformatics, 20(1):114.
Bła
˙
zej, P., Wnetrzak, M., Mackiewicz, D., and Mackiewicz,
P. (2020). Basic principles of the genetic code exten-
sion. Royal Society Open Science, 7(2):191384.
Bła
˙
zej, P., Wnetrzak, M., and Mackiewicz, P. (2016). The
role of crossover operator in evolutionary-based ap-
proach to the problem of genetic code optimization.
BioSystems, 150:61–72.
Chin, J. W. (2014). Expanding and reprogramming the ge-
netic code of cells and animals. Annu Rev Biochem,
83:379–408.
Chin, J. W. (2017). Expanding and reprogramming the ge-
netic code. Nature, 550(7674):53–60.
Dudkiewicz, A., Mackiewicz, P., Nowicka, A., Kowalezuk,
M., Mackiewicz, D., Polak, N., Smolarczyk, K., Ba-
naszak, J., Dudek, M. R., and Cebrat, S. (2005). Cor-
respondence between mutation and selection pressure
and the genetic code degeneracy in the gene evolution.
Future Generation Computer Systems, 21(7):1033–
1039.
Epstein, C. J. (1966). Role of the amino-acid ”code” and of
selection for conformation in the evolution of proteins.
Nature, 210(5031):25–8.
Freeland, S. J. and Hurst, L. D. (1998). The genetic code
is one in a million. Journal of Molecular Evolution,
47(3):238–248.
Freeland, S. J., Knight, R. D., and Landweber, L. F. (2000).
Measuring adaptation within the genetic code. Trends
Biochem Sci, 25(2):44–5.
Gilis, D., Massar, S., Cerf, N. J., and Rooman, M. (2001).
Optimality of the genetic code with respect to protein
stability and amino-acid frequencies. Genome Biol,
2(11):research0049.1–0049.12.
Goldberg, A. L. and Wittes, R. E. (1966). Genetic code:
aspects of organization. Science, 153(3734):420–4.
Haig, D. and Hurst, L. D. (1991). A quantitative measure
of error minimization in the genetic code. Journal of
Molecular Evolution, 33(5):412–417.
Hohsaka, T., Ashizuka, Y., Murakami, H., and Sisido, M.
(1996). Incorporation of nonnatural amino acids into
streptavidin through in vitro frame-shift suppression.
J Am Chem Soc, 118(40):9778–9779.
Italia, J. S., Addy, P. S., Wrobel, C. J., Crawford, L. A.,
Lajoie, M. J., Zheng, Y., and Chatterjee, A. (2017).
An orthogonalized platform for genetic code expan-
sion in both bacteria and eukaryotes. Nat Chem Biol,
13(4):446–450.
Iwane, Y., Hitomi, A., Murakami, H., Katoh, T., Goto, Y.,
and Suga, H. (2016). Expanding the amino acid reper-
toire of ribosomal polypeptide synthesis via the ar-
tificial division of codon boxes. Nature Chemistry,
8(4):317–325.
Mackiewicz, P., Biecek, P., Mackiewicz, D., Kiraga, J.,
Baczkowski, K., Sobczynski, M., and Cebrat, S.
(2008). Optimisation of asymmetric mutational pres-
sure and selection pressure around the universal ge-
netic code. Computational Science - ICCS 2008, Pt 3,
Lecture Notes in Computer Science, 5103:100–109.
Massey, S. E. (2008). A neutral origin for error minimiza-
tion in the genetic code. Journal of Molecular Evolu-
tion, 67(5):510–516.
BIOINFORMATICS 2021 - 12th International Conference on Bioinformatics Models, Methods and Algorithms
36