REFERENCES
Bhavsar, H., & Amit Ganatra. (2016). Radial Basis
Polynomial Kernel (RBPK): A Generalized Kernel for
Support Vector Machine. International Journal of
Computer Science and Information Security, 14(April).
Breiman, L. (1996). Bagging Predictors. Machine
Learning, 24(2), 123–140.
Canuto, A. M. P., Abreu, M. C. C., de Melo Oliveira, L.,
Xavier, J. C., & Santos, A. de M. (2007). Investigating
the influence of the choice of the ensemble members in
accuracy and diversity of selection-based and fusion-
based methods for ensembles. Pattern Recognition
Letters, 28(4), 472–486.
Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer,
W. P. (2002). SMOTE: Synthetic Minority Over-
sampling Technique. In Journal of Artificial
Intelligence Research (Vol. 16).
Chlioui, I., Idri, A., & Abnane, I. (2020). Data
preprocessing in knowledge discovery in breast cancer:
systematic mapping study. Computer Methods in
Biomechanics and Biomedical Engineering: Imaging
and Visualization, 00(00), 1–15. https://doi.org/
10.1080/21681163.2020.1730974
Dietterich, T. G. (2000). Ensemble methods in machine
learning. Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 1857 LNCS, 1–15.
El Idrissi, T., & Idri, A. (2020). Deep Learning for Blood
Glucose Prediction: CNN vs LSTM. Lecture Notes in
Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 12250 LNCS, 379–393.
https://doi.org/10.1007/978-3-030-58802-1_28
Eltalhi, S., & Kutrani, H. (2019). Breast Cancer Diagnosis
and Prediction Using Machine Learning and Data
Mining Techniques: A Review. IOSR Journal of Dental
and Medical Sciences (IOSR-JDMS) e-ISSN, 18, 85–94.
Hosni, M., Abnane, I., Idri, A., Carrillo de Gea, J. M., &
Fernández-Alemán, J. L. (2019). Reviewing ensemble
classification methods in breast cancer. Computer
Methods and Programs in Biomedicine, 177, 89–112.
Hosni, M., García-Mateos, G., Carrillo-de-Gea, J. M., Idri,
A., & Fernández-Alemán, J. L. (2020). A mapping
study of ensemble classification methods in lung cancer
decision support systems. In Medical and Biological
Engineering and Computing (Vol. 58, Issue 10, pp.
2177–2193). Springer Science and Business Media
Deutschland GmbH. https://doi.org/10.1007/s11517-
020-02223-8
Hussain, M., Wajid, S. K., Elzaart, A., & Berbar, M. (2011).
A comparison of SVM kernel functions for breast
cancer detection. International Conference on
Computer Graphics, Imaging and Visualization, 145–
150.
Idri, A., Bouchra, E. O., Hosni, M., & Abnane, I. (2020).
Assessing the impact of parameters tuning in ensemble
based breast Cancer classification. Health and
Technology, 10(5), 1239–1255. https://doi.org/10.
1007/s12553-020-00453-2
Idri, A., Hosni, M., & Abnane, I. (2019). Impact of
Parameter Tuning on Machine Learning Based Breast
Cancer Classification (pp. 115–125). Springer, Cham.
https://doi.org/10.1007/978-3-030-16187-3_12
Idri, A., Hosni, M., & Abran, A. (2016). Systematic
literature review of ensemble effort estimation. Journal
of Systems and Software, 118, 151–175.
Idri, Chlioui, I., & EL Ouassif, B. (2018). A systematic map
of data analytics in breast cancer. Proceedings of the
Australasian Computer Science Week Multiconference
on - ACSW ’18, 1–10.
Kadi, I., Idri, A., & Fernandez-Aleman, J. L. (2017).
Knowledge discovery in cardiology: A systematic
literature review. International Journal of Medical
Informatics, 97, 12–32. https://doi.org/10.1016/
j.ijmedinf.2016.09.005
Kudo, T., & Matsumoto, Y. (2000). Japanese dependency
structure analysis based on support vector machines.
Proceedings of the 2000 Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing
and Very Large Corpora Held in Conjunction with the
38th Annual Meeting of the Association for
Computational Linguistics -, 13, 18–25.
Kuncheva, L. I. (2014). Combining Pattern Classifiers.
John Wiley & Sons, Inc.
Luxburg, U. von, & Schölkopf, B. (2011). Statistical
Learning Theory: Models, Concepts, and Results. In
Handbook of the History of Logic (Vol. 10).
Oskouei, R. J., Kor, N. M., & Maleki, S. A. (2017). Data
mining and medical world: breast cancers’ diagnosis,
treatment, prognosis and challenges. American Journal
of Cancer Research, 7(3), 610–627.
Rana, S. P., Dey, M., Tiberi, G., Sani, L., Vispa, A., Raspa,
G., Duranti, M., Ghavami, M., & Dudley, S. (2019).
Machine Learning Approaches for Automated Lesion
Detection in Microwave Breast Imaging Clinical Data.
Scientific Reports, 9(1), 1–12.
Santana, L. E. A., Canuto, A. M. P., & Xavier, J. C. (2008).
Using feature distribution methods in ensemble systems
combined by fusion and selection-based methods.
Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 5163 LNCS(PART
1), 245–254.
Schapire, & E., R. (1999). A brief introduction to boosting.
In Proceedings of the 16th international joint
conference on Artificial intelligence - Volume 2 (pp.
1401–1406).
Schölkopf, B., & Alexander, J. S. (2001). Support Vector
Machines, Regularization, Optimization, and Beyond.
In
Learning with Kernels (pp. 1–27).
Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z.
Y., Shi, W., Jiang, J., Yao, P. P., & Zhu, H. P. (2017).
Risk factors and preventions of breast cancer.
International Journal of Biological Sciences, 13(11),
1387–1397.
Topol, E. J. (2019). High-performance medicine: the
convergence of human and artificial intelligence. In
Nature Medicine (Vol. 25, Issue 1, pp. 44–56).