Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In 2005 IEEE com-
puter society conference on computer vision and pat-
tern recognition (CVPR’05), volume 1, pages 886–
893. IEEE.
DeTone, D., Malisiewicz, T., and Rabinovich, A. (2018).
Superpoint: Self-supervised interest point detection
and description. pages 337–33712.
Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic,
J., Torii, A., and Sattler, T. (2019). D2-Net: A Train-
able CNN for Joint Detection and Description of Lo-
cal Features. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion.
Garg, S., Babu, M., Dharmasiri, T., Hausler, S., Suender-
hauf, N., Kumar, S., Drummond, T., and Milford,
M. (2019). Look no deeper: Recognizing places
from opposing viewpoints under varying scene ap-
pearance using single-view depth estimation. In 2019
International Conference on Robotics and Automation
(ICRA), pages 4916–4923. IEEE.
Garg, S., Suenderhauf, N., and Milford, M. (2018a). Don’t
look back: Robustifying place categorization for
viewpoint-and condition-invariant place recognition.
In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 3645–3652. IEEE.
Garg, S., Suenderhauf, N., and Milford, M. (2018b). Lost?
appearance-invariant place recognition for opposite
viewpoints using visual semantics. arXiv preprint
arXiv:1804.05526.
Gawel, A., Del Don, C., Siegwart, R., Nieto, J., and Cadena,
C. (2018). X-view: Graph-based semantic multi-view
localization. IEEE Robotics and Automation Letters,
3(3):1687–1694.
Hartley, R. and Zisserman, A. (2003). Multiple view geom-
etry in computer vision. Cambridge university press.
J
´
egou, H., Douze, M., Schmid, C., and P
´
erez, P. (2010). Ag-
gregating local descriptors into a compact image rep-
resentation. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 3304–
3311. IEEE.
Kelly, A., Nagy, B., Stager, D., and Unnikrishnan,
R. (2007). Field and service applications-an
infrastructure-free automated guided vehicle based on
computer vision-an effort to make an industrial robot
vehicle that can operate without supporting infras-
tructure. IEEE Robotics & Automation Magazine,
14(3):24–34.
K
¨
ummerle, R., Grisetti, G., Strasdat, H., Konolige, K., and
Burgard, W. (2011). g 2 o: A general framework
for graph optimization. In 2011 IEEE International
Conference on Robotics and Automation, pages 3607–
3613. IEEE.
Labb
´
e, M. and Michaud, F. (2013). Appearance-based
loop closure detection for online large-scale and long-
term operation. IEEE Transactions on Robotics,
29(3):734–745.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the seventh
IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60(2):91–
110.
Milford, M. J. and Wyeth, G. F. (2012). Seqslam: Vi-
sual route-based navigation for sunny summer days
and stormy winter nights. In 2012 IEEE International
Conference on Robotics and Automation, pages 1643–
1649. IEEE.
Mount, J. and Milford, M. (2017). Image rejection and
match verification to improve surface-based localiza-
tion. In Proc. Australas. Conf. Robot. Autom., pages
213–222.
Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
Orb-slam: a versatile and accurate monocular slam
system. IEEE Transactions on Robotics, 31(5):1147–
1163.
Nourani-Vatani, N., Roberts, J., and Srinivasan, M. V.
(2009). Practical visual odometry for car-like ve-
hicles. In 2009 IEEE International Conference on
Robotics and Automation, pages 3551–3557. IEEE.
Oliva, A. and Torralba, A. (2006). Building the gist of a
scene: The role of global image features in recogni-
tion. Progress in brain research, 155:23–36.
Radenovi
´
c, F., Tolias, G., and Chum, O. (2018). Fine-tuning
cnn image retrieval with no human annotation. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.
Sivic, J. and Zisserman, A. (2003). Video google: A text re-
trieval approach to object matching in videos. In Pro-
ceedings of International Conference on Computer Vi-
sion (ICCV), page 1470. IEEE.
S
¨
underhauf, N., Shirazi, S., Jacobson, A., Dayoub, F., Pep-
perell, E., Upcroft, B., and Milford, M. (2015). Place
recognition with convnet landmarks: Viewpoint-
robust, condition-robust, training-free. Proceedings of
Robotics: Science and Systems XII.
Zhang, L., Finkelstein, A., and Rusinkiewicz, S. (2019).
High-precision localization using ground texture. In
2019 International Conference on Robotics and Au-
tomation (ICRA), pages 6381–6387. IEEE.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
416