Au, O. K.-C., Zheng, Y., Chen, M., Xu, P., and Tai, C.-
L. (2011). Mesh segmentation with concavity-aware
fields. IEEE Transactions on Visualization and Com-
puter Graphics, 18(7):1125–1134.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In Leonardis, A., Bischof,
H., and Pinz, A., editors, Computer Vision – ECCV
2006, pages 404–417, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Biederman, I. (1987). Recognition-by-components: a the-
ory of human image understanding. Psychological re-
view, 94(2):115.
Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path
kernels on graphs. In Fifth IEEE International Confer-
ence on Data Mining (ICDM’05), pages 8–pp. IEEE.
Bronstein, A. M., Bronstein, M. M., Guibas, L. J., and Ovs-
janikov, M. (2011). Shape google: Geometric words
and expressions for invariant shape retrieval. ACM
Transactions on Graphics (TOG), 30(1):1–20.
Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanra-
han, P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015).
Shapenet: An information-rich 3d model repository.
CoRR, abs/1512.03012.
Chen, X., Golovinskiy, A., and Funkhouser, T. (2009). A
benchmark for 3D mesh segmentation. ACM Trans-
actions on Graphics (Proc. SIGGRAPH), 28(3).
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.
Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical
model for learning natural scene categories. In 2005
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), volume 2,
pages 524–531. IEEE.
Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M.,
and Borgwardt, K. (2013). Scalable kernels for graphs
with continuous attributes. In Advances in neural in-
formation processing systems, pages 216–224.
Floyd, R. W. (1962). Algorithm 97: shortest path. Commu-
nications of the ACM, 5(6):345.
George, D., Xie, X., and Tam, G. K. (2018). 3d mesh
segmentation via multi-branch 1d convolutional neu-
ral networks. Graphical Models, 96:1–10.
Golovinskiy, A. and Funkhouser, T. (2008). Randomized
cuts for 3d mesh analysis. In ACM SIGGRAPH Asia
2008 papers, pages 1–12. ACM New York, NY, USA.
Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman,
S., and Cohen-Or, D. (2019). Meshcnn: a network
with an edge. ACM Transactions on Graphics (TOG),
38(4):1–12.
Huang, J., Su, H., and Guibas, L. (2018). Robust water-
tight manifold surface generation method for shapenet
models. arXiv preprint arXiv:1802.01698.
Kalogerakis, E., Averkiou, M., Maji, S., and Chaudhuri, S.
(2017). 3d shape segmentation with projective convo-
lutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 3779–3788.
Kalogerakis, E., Hertzmann, A., and Singh, K. (2010).
Learning 3d mesh segmentation and labeling. In ACM
SIGGRAPH 2010 papers, pages 1–12. Citeseer.
Kanezaki, A., Matsushita, Y., and Nishida, Y. (2018). Ro-
tationnet: Joint object categorization and pose estima-
tion using multiviews from unsupervised viewpoints.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5010–5019.
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003).
Rotation invariant spherical harmonic representation
of 3 d shape descriptors. In Symposium on geometry
processing, volume 6, pages 156–164.
Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.
Kriege, N. M., Johansson, F. D., and Morris, C. (2020). A
survey on graph kernels. Applied Network Science,
5(1):1–42.
Le, T., Bui, G., and Duan, Y. (2017). A multi-view recurrent
neural network for 3d mesh segmentation. Computers
& Graphics, 66:103–112.
Li, J., Chen, B. M., and Lee, G. H. (2018). So-net: Self-
organizing network for point cloud analysis. arXiv
preprint arXiv:1803.04249.
Lien, J.-M. and Amato, N. M. (2007). Approximate con-
vex decomposition of polyhedra. In Proceedings of
the 2007 ACM symposium on Solid and physical mod-
eling, pages 121–131.
Loosli, G., Canu, S., and Ong, C. S. (2015). Learning svm
in kre
˘
ın spaces. IEEE transactions on pattern analysis
and machine intelligence, 38(6):1204–1216.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the seventh
IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee.
Maturana, D. and Scherer, S. (2015). Voxnet: A 3d con-
volutional neural network for real-time object recog-
nition. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 922–
928. IEEE.
Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. (2017). Geometric deep learn-
ing on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5115–
5124.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 652–660.
Qi, C. R., Su, H., Nießner, M., Dai, A., Yan, M., and
Guibas, L. J. (2016). Volumetric and multi-view cnns
for object classification on 3d data. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5648–5656.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space.
3D Object Classification via Part Graphs
425