Dasarathy, B. V. (1991). Nearest neighbor (nn) norms: Nn
pattern classification techniques. IEEE Computer So-
ciety Tutorial.
David, V., Adochiei, N., Adochiei, F., and Tudosa, I.
(2011a). ECG waves and features extraction using
Wavelet Multi-Resolution Analysis. In 2011 E-Health
and Bioengineering Conference (EHB), pages 1–4.
David, V., Adochiei, N., and Tudosa, I. (2011b). Methods
of electromagnetic interference reduction in electro-
cardiographic signal acquisition. Environmental En-
gineering and Management Journal, 10(4):553–559.
De Chazal, P., O’Dwyer, M., and Reilly, R. B. (2004). Auto-
matic classification of heartbeats using ecg morphol-
ogy and heartbeat interval features. IEEE transactions
on biomedical engineering, 51(7):1196–1206.
Devasena, C. L. (2014). Comparative analysis of random
forest rep tree and j48 classifiers for credit risk predic-
tion. In International Conference on Communication,
Computing and Information Technology (ICCCMIT-
2014).
Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of computer and system sciences,
55(1):119–139.
Garcia, G., Moreira, G., Menotti, D., and Luz, E. (2017).
Inter-patient ecg heartbeat classification with temporal
vcg optimized by pso. Scientific Reports, 7(1):1–11.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C.-K., and Stanley, H. E. (2000). Phys-
iobank, physiotoolkit, and physionet: components of
a new research resource for complex physiologic sig-
nals. circulation, 101(23):e215–e220.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18.
Hassanien, A. E., Dey, N., and Borra, S. (2018). Medical
Big Data and Internet of Medical Things: Advances,
Challenges and Applications.
Jha, C. K. and Kolekar, M. H. (2018). Electrocardiogram
data compression using DCT based discrete orthogo-
nal Stockwell transform. Biomedical Signal Process-
ing and Control, 46:174–181.
Kandala, R. N., Dhuli, R., Pławiak, P., Naik, G. R., Moein-
zadeh, H., Gargiulo, G. D., and Gunnam, S. (2019).
Towards real-time heartbeat classification: evalua-
tion of nonlinear morphological features and voting
method. Sensors, 19(23):5079.
Lang, S., Bravo-Marquez, F., Beckham, C., Hall, M.,
and Frank, E. (2019). Wekadeeplearning4j: A deep
learning package for weka based on deeplearning4j.
Knowledge-Based Systems, 178:48 – 50.
Mar, T., Zaunseder, S., Mart
´
ınez, J. P., Llamedo, M., and
Poll, R. (2011). Optimization of ecg classification
by means of feature selection. IEEE transactions on
Biomedical Engineering, 58(8):2168–2177.
Mond
´
ejar-Guerra, V., Novo, J., Rouco, J., Penedo, M. G.,
and Ortega, M. (2019). Heartbeat classification fusing
temporal and morphological information of ecgs via
ensemble of classifiers. Biomedical Signal Processing
and Control, 47:41–48.
Moody, G. B. and Mark, R. G. (2001). The impact of the
mit-bih arrhythmia database. IEEE Engineering in
Medicine and Biology Magazine, 20(3):45–50.
Noble, W. S. (2006). What is a support vector machine?
Nature biotechnology, 24(12):1565–1567.
Pan, J. and Tompkins, W. J. (1985). A real-time qrs de-
tection algorithm. IEEE transactions on biomedical
engineering, (3):230–236.
Picariello, F., Iadarola, G., Balestrieri, E., Tudosa, I., and
De Vito, L. (2021). A novel compressive sampling
method for ecg wearable measurement systems. Mea-
surement, 167:108259.
Pohlmann, K. C. (1995). Principles of digital audio.
McGraw-Hill, Inc.
Quinlan, J. R. (2014). C4. 5: programs for machine learn-
ing. Elsevier.
Raj, S. and Ray, K. C. (2018). Sparse representation of ecg
signals for automated recognition of cardiac arrhyth-
mias. Expert systems with applications, 105:49–64.
Rajesh, K.N.and Dhuli, R. (2018). Classification of imbal-
anced ecg beats using re-sampling techniques and ad-
aboost ensemble classifier. Biomed. Signal Process.
Control, 41:242–254.
Sedghamiz, H. (2014). Matlab implementation of pan
tompkins ecg qrs detector. Code Available at the File
Exchange Site of MathWorks.
Wang, C., Qin, Y., Jin, H., Kim, I., Granados Vergara, J. D.,
Dong, C., Jiang, Y., Zhou, Q., Li, J., He, Z., Zou,
Z., Zheng, L., Wu, X., and Wang, Y. (2019). A low
power cardiovascular healthcare system with cross-
layer optimization from sensing patch to cloud plat-
form. IEEE Transactions on Biomedical Circuits and
Systems, 13(2):314–329.
Xu, S. S., Mak, M.-W., and Cheung, C.-C. (2018). To-
wards end-to-end ecg classification with raw signal
extraction and deep neural networks. IEEE journal of
biomedical and health informatics, 23(4):1574–1584.
Ye, C., Kumar, B. V., and Coimbra, M. T. (2012). Heartbeat
classification using morphological and dynamic fea-
tures of ecg signals. IEEE Transactions on Biomedical
Engineering, 59(10):2930–2941.
Morphological Classification of Heartbeats in Compressed ECG
393