VSS is composed of three main computing threads
executed asynchronously, using CPU and/or GPU
capabilities and sharing data sequentially. Experi-
mental results with challenging scenarios reveal the
high effectiveness and scalability of the proposed
approach. Furthermore, we have presented an on-
line and unsupervised clustering approach (ODIVC),
which achieves state-of-the-art results in well-known
large-scale datasets, with a reduced computational
cost compared to the alternatives.
Future work will focus on extending our VSS to
distributed computing infrastructures, with heteroge-
neous hardware as nodes of the VSS, including GPU
computing servers that process and share data for
video-surveillance purposes.
REFERENCES
Agarwal, A. (2019). Static automatic batching in Ten-
sorFlow. In 36th ICML, volume 97, pages 92–101.
PMLR.
Amig
´
o, E., Gonzalo, J., Artiles, J., and Verdejo, M. (2009).
Amig
´
o e, gonzalo j, artiles j et ala comparison of ex-
trinsic clustering evaluation metrics based on formal
constraints. inform retriev 12:461-486. Information
Retrieval, 12:461–486.
Chaudhari, S. T. and Kale, A. (2010). Face normalization:
Enhancing face recognition. In 2010 3rd ICETET,
pages 520–525.
Chen, J., Li, K., Deng, Q., Li, K., and Yu, P. S. (2019).
Distributed deep learning model for intelligent video
surveillance systems with edge computing. IEEE
Trans. on Industrial Informatics, pages 1–1.
Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Ar-
cface: Additive angular margin loss for deep face
recognition. In 2019 IEEE CVPR, pages 4685–4694.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In 2016 IEEE
CVPR, pages 770–778.
Jankar, J. R. and Shah, S. K. (2017). Computational analy-
sis of hybrid high efficiency video encoders. In ICISS,
pages 250–255.
Lim, K.-S., Lee, S.-H., Han, J. W., and Kim, G. W. (2018).
Design considerations for an intelligent video surveil-
lance system using cloud computing. In PDCAT,
pages 84–89.
Lin, W., Chen, J., Castillo, C. D., and Chellappa, R. (2018).
Deep density clustering of unconstrained faces. In
2018 IEEE/CVF CVPR, pages 8128–8137.
Lloyd, S. P. (1982). Least squares quantization in pcm.
IEEE Trans. Inf. Theory, 28:129–136.
Mayer, C. A., Felkel, R., and Peterson, K. (2015). Best
practice on automated passenger flow measurement
solutions. In Journal of Airport Management, vol-
ume 9, pages 144–153.
Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T.,
Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Ch-
eney, J., and Grother, P. (2018). Iarpa janus bench-
mark - c: Face dataset and protocol. In 2018 ICB,
pages 158–165.
Nasir, M., Muhammad, K., Lloret, J., Kumar, A., and Saj-
jad, M. (2018). Fog computing enabled cost-effective
distributed summarization of surveillance videos for
smart cities. Journal of Parallel and Distributed Com-
puting, 126.
Otto, C., Wang, D., and Jain, A. K. (2018). Clustering mil-
lions of faces by identity. IEEE TPAMI, 40(2):289–
303.
Radul, A., Patton, B., Maclaurin, D., Hoffman, M. D.,
and Saurous, R. A. (2019). Automatically batching
control-intensive programs for modern accelerators.
ArXiv, abs/1910.11141.
Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE TPAMI, 22:888–905.
Shi, Y., Otto, C., and Jain, A. K. (2018). Face cluster-
ing: Representation and pairwise constraints. IEEE
Transactions on Information Forensics and Security,
13(7):1626–1640.
Tan, X. and Triggs, B. (2010). Enhanced local texture fea-
ture sets for face recognition under difficult lighting
conditions. IEEE Transactions on Image Processing,
19(6):1635–1650.
TensorFlow, A. (2017). Implementation of control flow in
tensorflow. TensorFlow Whitepaper.
Tsakanikas, V. and Dagiuklas, T. (2017). Video surveillance
systems-current status and future trends. Computers &
Electrical Engineering, 70.
Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J.,
Li, Z., and Liu, W. (2018). Cosface: Large margin co-
sine loss for deep face recognition. In 2018 IEEE/CVF
CVPR, pages 5265–5274.
Wang, Z., Zheng, L., Li, Y., and Wang, S. (2019). Linkage
based face clustering via graph convolution network.
2019 IEEE/CVF CVPR, pages 1117–1125.
Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams,
J., Miller, T., Kalka, N., Jain, A. K., Duncan, J. A.,
Allen, K., Cheney, J., and Grother, P. (2017). Iarpa
janus benchmark-b face dataset. In 2017 IEEE
CVPRW, pages 592–600.
Yadwadkar, N. J., Romero, F., Li, Q., and Kozyrakis, C.
(2019). A case for managed and model-less inference
serving. In HotOS ’19, pages 184–191.
Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016a). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.
Zhang, Z., Luo, P., Loy, C., and Tang, X. (2016b). Learning
deep representation for face alignment with auxiliary
attributes. IEEE TPAMI, 38(5):918–930.
Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance
443