REFERENCES
Anicic, D., Fodor, P., Rudolph, S., and Stojanovic, N.
(2011a). EP-SPARQL: a unified language for event
processing and stream reasoning. In Proc. of Int. Conf.
on World Wide Web (WWW), pages 635–644.
Anicic, D., Fodor, P., Rudolph, S., St
¨
uhmer, R., Stojanovic,
N., and Studer, R. (2011b). ETALIS: Rule-based rea-
soning in event processing. In Proc. of Reasoning in
event-based distributed systems, pages 99–124.
Baader, F., Calvanese, D., McGuinness, D., Patel-
Schneider, P., and Nardi, D. (2003). The description
logic handbook: Theory, implementation and applica-
tions. Cambridge university press.
Bienvenu, M. (2016). Ontology-mediated query answer-
ing: harnessing knowledge to get more from data. In
Proc. of Int. Join Conf. on Artificial Intelligence (IJ-
CAI), pages 4058–4061.
Cabalar, P., Otero, R. P., and Pose, S. G. (2000). Tem-
poral constraint networks in action. In Proc. of Eu-
ropean Conf. on Artificial Intelligence (ECAI), pages
543–547.
Dauxais, Y., Guyet, T., Gross-Amblard, D., and Happe, A.
(2017). Discriminant chronicles mining. In Proc. of
Conf. on Artificial Intelligence in Medicine in Europe
(AIME), pages 234–244.
Dousson, C. and Le Maigat, P. (2007). Chronicle recogni-
tion improvement using temporal focusing and hier-
archization. In Proc. of Int. Join Conf. on Artificial
Intelligence (IJCAI), pages 324–329.
Giatrakos, N., Artikis, A., Deligiannakis, A., and Garo-
falakis, M. (2017). Complex event recognition in the
big data era. In Proc. VLDB Endow., volume 10, pages
1996–1999.
Hitzler, P., Krotzsch, M., and Rudolph, S. (2009). Founda-
tions of semantic web technologies. CRC press.
Hong, N., Wen, A., Stone, D. J., Tsuji, S., Kingsbury, P. R.,
Rasmussen, L. V., Pacheco, J. A., Adekkanattu, P.,
Wang, F., Luo, Y., et al. (2019). Developing a FHIR-
based EHR phenotyping framework: A case study for
identification of patients with obesity and multiple co-
morbidities from discharge summaries. J. of Biomed-
ical Informatics, 99:103310.
Kalayci, E. G., Brandt, S., Calvanese, D., Ryzhikov, V.,
Xiao, G., and Zakharyaschev, M. (2019). Ontology-
based access to temporal data with ontop: A frame-
work proposal. Int. J. of Applied Mathematics and
Computer Science, 29(1):17–30.
O’Connor, M. J., Shankar, R. D., Parrish, D. B., and Das,
A. K. (2009). Knowledge-data integration for tem-
poral reasoning in a clinical trial system. Int. J. of
Medical Informatics, 78:77–85.
Pacaci, A., Gonul, S., Sinaci, A. A., Yuksel, M., and
Laleci Erturkmen, G. B. (2018). A semantic transfor-
mation methodology for the secondary use of observa-
tional healthcare data in postmarketing safety studies.
Frontiers in pharmacology, 9:435.
Rivault, Y., Dameron, O., and Le Meur, N. (2019).
queryMed: Semantic web functions for linking phar-
macological and medical knowledge to data. Bioin-
formatics.
Sahugu
`
ede, A., Le Corronc, E., and Le Lann, M.-V. (2018).
An ordered chronicle discovery algorithm. In 3nd
ECML/PKDD Workshop on Advanced Analytics and
Learning on Temporal Data, AALTD’18.
Sellami, C., Samet, A., and Tobji, M. A. B. (2018). Fre-
quent chronicle mining: Application on predictive
maintenance. In Proc. of Int. Conf. on Machine Learn-
ing and Applications (ICMLA), pages 1388–1393.
Snodgrass, R. T. and llsoo Ahn (1986). Temporal databases.
Computer, 19(09):35–42.
Tuppin, P., Rudant, J., Constantinou, P., Gastaldi-M
´
enager,
C., et al. (2017). Value of a national administrative
database to guide public decisions: From the syst
`
eme
national d’information interr
´
egimes de l’assurance
maladie (sniiram) to the syst
`
eme national des donn
´
ees
de sant
´
e (snds) in france. Revue d’epidemiologie et de
sante publique, 65:S149–S167.
Wang, Y., Zhu, M., Qu, L., Spaniol, M., and Weikum,
G. (2010). Timely YAGO: harvesting, querying, and
visualizing temporal knowledge from wikipedia. In
Proc. of Int. Conf. on Extending Database Technology
(EDBT), pages 697–700.
Zhang, F., Wang, K., Li, Z., and Cheng, J. (2019). Temporal
data representation and querying based on RDF. IEEE
Access, 7:85000–85023.
HEALTHINF 2021 - 14th International Conference on Health Informatics
142