2D location of such points on real images, various
keypoint-based deep neural network can be trained
for object pose estimation in end-to-end framework.
ACKNOWLEDGEMENTS
This work was supported by Polish National
Science Center (NCN) under a research grant
2017/27/B/ST6/01743.
REFERENCES
Arthur, D. and Vassilvitskii, S. (2007). K-means++: The
Advantages of Careful Seeding. In Proc. ACM-SIAM
Symp. on Discrete Algorithms, pages 1027–1035.
Blender Online Community (2020). Blender - a 3D mod-
elling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam.
Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton,
J., and Rother, C. (2014). Learning 6D object pose es-
timation using 3D object coordinates. In ECCV, pages
536–551. Springer.
Brachmann, E., Michel, F., Krull, A., Yang, M., Gumhold,
S., and Rother, C. (2016). Uncertainty-driven 6D pose
estimation of objects and scenes from a single RGB
image. In CVPR, pages 3364–3372.
Bradski, G. and Kaehler, A. (2013). Learning OpenCV:
Computer Vision in C++ with the OpenCV Library.
O’Reilly Media, Inc., 2nd edition.
Bugaev, B., Kryshchenko, A., and Belov, R. (2018). Com-
bining 3D model contour energy and keypoints for ob-
ject tracking. In ECCV, pages 55–70, Cham. Springer.
Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., and
Fox, D. (2019). PoseRBPF: A Rao-Blackwellized
Particle Filter for 6D Object Pose Tracking. In
Robotics: Science and Systems (RSS).
Fischler, M. A. and Bolles, R. C. (1981). Random Sample
Consensus: A Paradigm for Model Fitting with Ap-
plications to Image Analysis and Automated Cartog-
raphy. Commun. ACM, 24(6):381–395.
Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas,
J. J., Mar
´
ın-Jimenez, M. J. (2014). Automatic gener-
ation and detection of highly reliable fiducial markers
under occlusion. Pattern Rec., 47(6):2280–2292.
He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017).
Mask R-CNN. In IEEE Int. Conf. on Computer Vision
(ICCV), pages 2980–2988.
Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski,
G., Konolige, K., and Navab, N. (2013). Model based
training, detection and pose estimation of texture-less
3D objects in heavily cluttered scenes. In Computer
Vision – ACCV 2012, pages 548–562. Springer.
Hodan, T., Haluza, P., Obdrzalek, S., Matas, J., Lourakis,
M., and Zabulis, X. (2017). T-LESS: An RGB-D
dataset for 6D pose estimation of texture-less objects.
In WACV, pages 880–888.
Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In ICML - vol. 37, pages 448–456.
Kaskman, R., Zakharov, S., Shugurov, I., and Ilic, S.
(2019). HomebrewedDB: RGB-D dataset for 6D pose
estimation of 3D objects. In IEEE Int. Conf. on Com-
puter Vision Workshop (ICCVW), pages 2767–2776.
Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab, N.
(2017). SSD-6D: Making RGB-Based 3D Detection
and 6D Pose Estimation Great Again. In IEEE Int.
Conf. on Computer Vision, pages 1530–1538.
Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). EPnP:
An accurate O(n) solution to the PnP problem. Int. J.
Comput. Vision, 81(2):155–166.
Lepetit, V., Pilet, J., and Fua, P. (2004). Point matching as a
classification problem for fast and robust object pose
estimation. In CVPR, pages 244–250.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Dollar, P., and Zitnick, C. L. (2014).
Microsoft COCO: Common Objects in Context. In
ECCV, pages 740–755. Springer.
Lopatin, V. and Kwolek, B. (2020). 6D pose estimation of
texture-less objects on RGB images using CNNs. In
The 19th Int. Conf. on Artificial Intelligence and Soft
Computing, pages 180–192. Springer.
Majcher, M. and Kwolek, B. (2020). 3D Model-Based 6D
Object Pose Tracking on RGB Images Using Particle
Filtering and Heuristic Optimization. In 15th Int. The
Int. Conf. on Computer Vision Theory and Applica-
tions (VISAPP), pages 690–697, vol. 5. SciTePress.
Marchand, E., Uchiyama, H., and Spindler, F. (2016).
Pose estimation for augmented reality: A hands-on
survey. IEEE Trans. on Vis. and Comp. Graphics,
22(12):2633–2651.
Peng, S., Liu, Y., Huang, Q., Zhou, X., and Bao, H. (2019).
PVNet: Pixel-Wise Voting Network for 6DoF Pose
Estimation. In IEEE Conf. on Comp. Vision and Patt.
Rec., pages 4556–4565.
Prisacariu, V. A. and Reid, I. D. (2012). PWP3D: Real-
Time Segmentation and Tracking of 3D Objects. Int.
J. Comput. Vision, 98(3):335–354.
Rad, M. and Lepetit, V. (2017). BB8: A scalable, accurate,
robust to partial occlusion method for predicting the
3D poses of challenging objects without using depth.
In IEEE Int. Conf. on Comp. Vision, pages 3848–3856.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
Net: Convolutional networks for biomedical image
segmentation. In MICCAI, pages 234–241. Springer.
(Vidal), J., (Lin), C., and (Mart
´
ı), R. (2018). 6D pose esti-
mation using an improved method based on point pair
features. In Int. Conf. on Control, Automation and
Robotics, pages 405–409.
Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison,
A. J., and Leutenegger, S. (2016). ElasticFusion. Int.
J. Rob. Res., 35(14):1697–1716.
Wu, P., Lee, Y., Tseng, H., Ho, H., Yang, M., and Chien,
S. (2017). A benchmark dataset for 6DoF object pose
tracking. In IEEE Int. Symp. on Mixed and Aug. Real-
ity, pages 186–191.
Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2018).
PoseCNN: A Convolutional Neural Network for 6D
Object Pose Estimation in Cluttered Scenes. In
IEEE/RSJ Int. Conf. on Intel. Robots and Systems.
Zhao, Z., Peng, G., Wang, H., Fang, H., Li, C., and Lu,
C. (2018). Estimating 6D pose from localizing desig-
nated surface keypoints. ArXiv, abs/1812.01387.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
926