(a) ROC For first stage. (b) ROC For Second stage.
Figure 10: ROC curves representing the performance of the proposed models (a) Normal vs Pneumonia (b) Bacterial Vs Viral
Pneumonia.
REFERENCES
Acharya, A. K. and Satapathy, R. (2020). A deep learn-
ing based approach towards the automatic diagnosis
of pneumonia from chest radio-graphs. Biomedical
and Pharmacology Journal, 13(1):449–455.
Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z.,
Zhang, N., Diao, K., Lin, B., Zhu, X., Li, K., Li, S.,
Shan, H., Jacobi, A., and Chung, M. (2020). Chest ct
findings in coronavirus disease-19 (covid-19): Rela-
tionship to duration of infection. Radiological Society
of North America (RSNA), 295(3):685–691.
Diaz, J. V., Baller, A., Banerjee, A., Bertagnolio, S.,
Bonet, M., Bosman, A., Bousseau, M.-C., Bucagu,
M., Chowdhary, N., Cunningham, J., Doherty, M.,
Dua, T., Ford, N., Grummer-Strawn, L., Hanna, F.,
Huttner, B., Jaramillo, E., Kerkhove, M. V., Kim,
C., Kolappa, K., Kortz, T., Lincetto, O., Mills, J.-A.,
Moja, L., Norris, S., Oladapo, O., Olumese, P., van
Ommeren, M., Penazzato, M., Portela, A., Reis, A.,
Relan, P., Rogers, L., Rollins, N., Smith, I., Sobel, H.,
Solon, M. P., Sumi, Y., Thorson, A., Trivedi, K., Vito-
ria, M., Weise, P., Were, W., and Zignol., M. (2020).
Clinical management of COVID-19. World Health Or-
ganization.
Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P.,
and Ji, W. (2020). Sensitivity of chest ct for covid-19:
Comparison to rt-pcr. Radiological Society of North
America (RSNA), 296(2):E115–E117.
Farag, A. T., El-Wahab, A. R. A., Nada, M., Elhakeem,
M., Mahmoud, O., Rashwan, R. K., and Sallab, A. E.
(2020). Multichexnet: A multi-task learning deep net-
work for pneumonia-like diseases diagnosis from x-
ray scans. ArXiv, abs/2008.01973.
Hammoudi, K., Benhabiles, H., Melkemi, M., Dornaika, F.,
Arganda-Carreras, I., Collard, D., and Scherpereel, A.
(2020). Deep learning on chest x-ray images to detect
and evaluate pneumonia cases at the era of covid-19.
ArXiv, abs/2004.03399.
Huang, G., Liu, Z., and Weinberger, K. Q. (2017). Densely
connected convolutional networks. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2261–2269.
Khalifa, N., Taha, M., Hassanien, A., and Elghamrawy,
S. M. (2020). Detection of coronavirus (covid-
19) associated pneumonia based on generative ad-
versarial networks and a fine-tuned deep transfer
learning model using chest x-ray dataset. ArXiv,
abs/2004.01184.
Li, Y. and Xia, L. (2020). Coronavirus disease 2019
(covid-19): Role of chest ct in diagnosis and man-
agement. American Journal of Roentgenology (AJR),
214(6):1280–1286.
Mahbub, H., Jordan, B., and Diego, F. (2018). A study on
cnn transfer learning for image classification. Annual
UK Workshop on Computational Intelligence.
Mahmud, T., Rahman, M. A., and Fattah, S. A. (2020). Cov-
xnet: A multi-dilation convolutional neural network
for automatic covid-19 and other pneumonia detec-
tion from chest x-ray images with transferable multi-
receptive feature optimization. Computers in Biology
and Medicine, 122.
Rahman, T., Chowdhury, M. E. H., Khandakar, A., Islam,
K. R., Islam, K. F., Mahbub, Z. B., Kadir, M. A., and
5, S. K. (2020). Transfer learning with deep convolu-
tional neural network (cnn) for pneumonia detection
using chest x-ray. Applied Sciences, 10(9):3233.
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan,
T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya,
K., Lungren, M. P., and Ng, A. Y. (2017). Chexnet:
Radiologist-level pneumonia detection on chest x-rays
with deep learning. ArXiv.
Schmidt, C. W. (2012). Ct scans: Balancing health risks and
medical benefits. Environmental Health Perspective,
120(3):a118–a121.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. 2016 IEEE Conference on Computer
Automated Model for Tracking COVID-19 Infected Cases till Final Diagnosis
153