Ajenaghughrure, I. B., Sousa, S., and Lamas, D. (2020)
Psychphysiological modelling of trust in technology:
Comparative analysis of algorithm ensemble methods,
IEEE SAMI 2021 (accepted)
Ajenaghughrure, I. B., Sousa, S., and Lamas. D. (2020)
Psychophysiological modeling of trust in technology:
The influence of feature selection methods. 13TH EICS
PACM journal (accepted)
Akash, K., Hu, W. L., Jain, N., & Reid, T. (2018). A
classification model for sensing human trust in
machines using EEG and GSR. ACM Transactions on
Interactive Intelligent Systems (TiiS), 8(4), 1-20.
Beer, J. M., Fisk, A. D., & Rogers, W. A. (2014). Toward a
framework for levels of robot autonomy in human-
robot interaction. Journal of human-robot interaction,
3(2), 74.
Benedek, M., & Kaernbach, C. (2010). A continuous
measure of phasic electrodermal activity. Journal of
neuroscience methods, 190(1), 80-91.
Carver, C. S., & White, T. L. (1994). Behavioral inhibition,
behavioral activation, and affective responses to
impending reward and punishment: the BIS/BAS
scales. Journal of personality and social psychology,
67(2), 319.
Elkins, A. C., & Derrick, D. C. (2013). The sound of trust:
voice as a measurement of trust during interactions with
embodied conversational agents. Group decision and
negotiation, 22(5), 897-913.
Fallon, C. K., Murphy, A. K., Zimmerman, L., & Mueller,
S. T. (2010, May). The calibration of trust in an
automated system: A sensemaking process. In 2010
International Symposium on Collaborative
Technologies and Systems (pp. 390-395). IEEE.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust
and TAM in online shopping: An integrated model.
MIS quarterly, 27(1), 51-90.
Glass, A., McGuinness, D. L., & Wolverton, M. (2008,
January). Toward establishing trust in adaptive agents.
In Proceedings of the 13th international conference on
Intelligent user interfaces (pp. 227-236).
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A.,
Strohmeier, D., Brodbeck, C., ... & Hämäläinen, M.
(2013). MEG and EEG data analysis with MNE-
Python. Frontiers in neuroscience, 7, 267.
Gulati, S., Sousa, S., and Lamas, D., (2019) Design,
development and evaluation of a human-computer trust
scale. Behaviour & Information Technology, pp. 1–12.
Hennessey, C., & Duchowski, A. T. (2010, March). An
open source eye-gaze interface: Expanding the
adoption of eye-gaze in everyday applications. In
Proceedings of the 2010 Symposium on Eye-Tracking
Research & Applications (pp. 81-84).
Hergeth, S., Lorenz, L., Vilimek, R., & Krems, J. F. (2016).
Keep your scanners peeled: Gaze behavior as a measure
of automation trust during highly automated driving.
Human factors, 58(3), 509-519.
Hirshfield, L. M., Hirshfield, S. H., Hincks, S., Russell, M.,
Ward, R., & Williams, T. (2011, July). Trust in human-
computer interactions as measured by frustration,
surprise, and workload. In International Conference on
Foundations of Augmented Cognition (pp. 507-516).
Springer, Berlin, Heidelberg.
Hoffman, R. R., Johnson, M., Bradshaw, J. M., &
Underbrink, A. (2013). Trust in automation. IEEE
Intelligent Systems, 28(1), 84-88.
Huckle, T., & Neckel, T. (2019). Bits and Bugs: A
Scientific and Historical Review on Software Failures
in Computational Science. Society for Industrial and
Applied Mathematics.
Hurlburt, G. (2017). How much to trust artificial
intelligence?. IT Professional, 19(4), 7-11.
Lee, J. D., & See, K. A. (2004). Trust in automation:
Designing for appropriate reliance. Human factors,
46(1), 50-80.
Leichtenstern, K., Bee, N., André, E., Berkmüller, U., &
Wagner, J. (2011, June). Physiological measurement of
trust-related behavior in trust-neutral and trust-critical
situations. In IFIP International Conference on Trust
Management (pp. 165-172). Springer, Berlin,
Heidelberg.
Lemmers-Jansen, I. L., Krabbendam, L., Veltman, D. J., &
Fett, A. K. J. (2017). Boys vs. girls: gender differences
in the neural development of trust and reciprocity
depend on social context. Developmental Cognitive
Neuroscience, 25, 235-245.
Litman, T. (2014). Autonomous vehicle implementation
predictions. Victoria Transport Policy Institute,
28(2014).
Lochner, M., Duenser, A., & Sarker, S. (2019, December).
Trust and Cognitive Load in semi-automated UAV
operation. In Proceedings of the 31st Australian
Conference on Human-Computer-Interaction (pp. 437-
441).
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., &
Arnaldi, B. (2007). A review of classification
algorithms for EEG-based brain–computer interfaces.
Journal of neural engineering, 4(2), R1.
Makowski, D. (2016). Neurokit: A python toolbox for
statistics and neurophysiological signal processing (eeg
eda ecg emg...). Memory and Cognition Lab'Day, 1.
Mirnig, A. G., Wintersberger, P., Sutter, C., & Ziegler, J.
(2016, October). A framework for analyzing and
calibrating trust in automated vehicles. In Adjunct
Proceedings of the 8th International Conference on
Automotive User Interfaces and Interactive Vehicular
Applications (pp. 33-38).
Oh, S., Seong, Y., & Yi, S. (2017). Preliminary study on
neurological measure of human trust in autonomous
systems. In IIE Annual Conference. Proceedings (pp.
1066-1072). Institute of Industrial and Systems
Engineers (IISE).
Owsley, C., Stalvey, B., Wells, J., & Sloane, M. E. (1999).
Older drivers and cataract: driving habits and crash risk.
Journals of Gerontology Series A: Biomedical Sciences
and Medical Sciences, 54(4), M203-M211.
Parasuraman, R., & Riley, V. (1997). Humans and
automation: Use, misuse, disuse, abuse. Human factors,
39(2), 230-253.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., ... & Vanderplas, J. (2011).