and segmentation of optic disc using convolutional
neural networks. International Journal of Electrical
& Computer Engineering, 10:2088–8708.
Brock, K. K., Mutic, S., McNutt, T. R., and H. Li and, M.
L. K. (2017). Use of image registration and fusion
algorithms and techniques in radiotherapy: report of
the AAPM Radiation Therapy Committee Task Group
No. 132. Medical Physics, 44(7):43–76.
Conci, A., Galv
˜
ao, S. S., Sequeiros, G. O., Saade, D. C., and
MacHenry, T. A. (2015). A new measure for compar-
ing biomedical regions of interest in segmentation of
digital images. Discrete Appl. Math., 197:103–113.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 886–893.
Deng, K., Tian, J., Zheng, J., Zhang, X., Dai, X., and Xu,
M. (2010). Retinal fundus image registration via vas-
cular structure graph matching. International Journal
of Biomedical Imaging, 2010:906067.
Dice, L. R. (1945). Measures of the amount of ecologic
association between species. Ecology, 26(3):297–302.
Falco, A. D., Galv
˜
ao, S., and Conci, A. (2020). A non lin-
ear registration without the use of the brightness con-
stancy hypothesis. In Proc. Intern. Conference Sys-
tems, Signals and Image Processing, pages 27–32.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Garcia-Guevara, J., Peterlik, I., Berger, M. O., and Cotin, S.
(2018). Biomechanics-based graph matching for aug-
mented CT-CBCT. International Journal of Computer
Assisted Radiology and Surgery, 13(6):805–813.
Gonz
´
alez, J. R., Pupo, Y., Hernandez, M., Conci, A.,
Machenry, T., and Fiirst, W. (2018). On image reg-
istration for study of thyroid disorders by infrared ex-
ams. In Proc. Intern. Conf. Image Proc., Computer
Vision, & Pattern Recognition, pages 151–158.
Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In Proceedings of the Alvey Vision
Conference, pages 147–151.
Holden, M. (2008). A review of geometric transformations
for nonrigid body registration. IEEE Transactions on
Medical Imaging, 27(1):111–28.
Ismail, N. H. F., Zaini, T. R. M., Jaafar, M., and Pin,
N. C. (2016). H-minima transform for segmentation
of structured surface. In Proceedings of the MATEC
Web of Conferences, page 25.
Jaccard, P. (1912). The distribution of the flora in the alpine
zone. New Phytologist, 11(2):37–50.
Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J.,
Avants, B., Chiang, M. C., Christensen, G. E., Collins,
D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson,
M., Lepage, C., Rueckert, D., Thompson, P., Ver-
cauteren, T., Woods, R. P., Mann, J. J., and Parsey,
R. V. (2009). Evaluation of 14 nonlinear deformation
algorithms applied to human brain MRI registration.
NeuroImage, 49(3):786–802.
Kornilov, A. and Safonov, I. (2018). An overview of wa-
tershed algorithm implementations in open source li-
braries. Journal of Imaging, 4(10):123.
Lee, C., Chang, Z., Lee, W., Lee, S., Chen, C., Chang,
Y., and Huang, C. (2012). Longitudinal registration
for breast IR image without markers. In Proceed-
ings of the International Conference on Quantitative
InfraRed Thermography.
Lee, C., Chuang, C. C., Chang, Z. W., Lee, W. J., Lee,
C. Y., C, S., Lee, Huang, C. S., Chang, Y. C., and
Chen, C. M. (2010). Quantitative dual-spectrum in-
frared approach for breast cancer detection. In Pro-
ceedings of the International Conference on Quanti-
tative InfraRed Thermography.
Ma, J., Zhao, J., and Yuille, A. L. (2016). Non-rigid point
set registration by preserving global and local struc-
tures. IEEE Trans. Image Processing, 25(1):53–64.
Pan, M. S., Yang, X. L., and Tang, J. T. (2012). Research
on interpolation methods in medical image process-
ing. Journal of Medical Systems, 36(2):777–807.
Pinheiro, M. A., Kybic, J., and Fua, P. (2017). Geometric
graph matching using Monte Carlo tree search. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 39(11):2171–2185.
Rahman, M. M. (2018). Literature-based biomedical image
retrieval with multimodal query expansion and data
fusion based on relevance feedback (RF). In Proc. In-
tern. Conference Image Processing, Computer Vision,
& Pattern Recognition, pages 103–107.
Riesen, K., Fischer, A., and Bunke, H. (2018). On the
impact of using utilities rather than costs for graph
matching. Neural Processing Letters, 48(2):691–707.
Silva, L. F., Santos, A. A., Bravo, R. S., Silva, A. C.,
Muchaluat-Saade, D. C., and Conci, A. (2016). Hy-
brid analysis for indicating patients with breast cancer
using temperature time series. Computer Methods and
Programs in Biomedicine, 130:142–153.
Silva, L. F., Sequeiros, G., Santos, M. L., Fontes, C. A. P.,
Muchaluat-Saade, D., and Conci, A. (2015). Ther-
mal signal analysis for breast cancer risk verifica-
tion. Studies in Health Technology and Informatics,
216:746–50.
Tong, Y., Udupa, J. K., Ciesielski, K. C., Wu, C., Mc-
Donough, J. M., Mong, D. A., and Campbell Jr, R. M.
(2017). Retrospective 4D MR image construction
from free-breathing slice acquisitions: a novel graph-
based approach. Medical Image Analysis, 35:345–
359.
Zhang, T. Y. and Suen, C. Y. (1984). A fast parallel algo-
rithm for thinning digital patterns. Communications
of the ACM, 27(3):236–239.
Zheng, W., Zou, L., Lian, X., Wang, D., and Zhao, D.
(2013). Graph similarity search with edit distance
constraint in large graph databases. In Proceedings
of the ACM International Conference on Information
& Knowledge Management, pages 1595–1600.
Zitov
´
a, B. and Flusser, J. (2003). Image registration
methods: a survey. Image and Vision Computing,
21(11):977–1000.
VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications
98