sion of the specific features characterizing paintings
is also expected to explain our results, since we do
not have theoretical tools to explore that way at the
moment. Thus a great number of application works
can be exploded in the future.
REFERENCES
Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S., and Zou, X.
(2019). Selective refinement network for high perfor-
mance face detection. ArXiv, abs/1809.02693.
Deng, J. (2009). A large-scale hierarchical image database.
In CVPR 2009.
El-Sawy, A., El-Bakry, H. M., and Loey, M. (2016). Cnn for
handwritten arabic digits recognition based on lenet-5.
In AISI.
Everingham, M., Gool, L. V., Williams, C. K. I., Winn,
J. M., and Zisserman, A. (2009). The pascal visual
object classes (voc) challenge. International Journal
of Computer Vision, 88:303–338.
Filonenko, A., Kurnianggoro, L., and Jo, K.-H. (2017).
Comparative study of modern convolutional neural
networks for smoke detection on image data. 2017
10th International Conference on Human System In-
teractions (HSI), pages 64–68.
Girshick, R. B. (2015). Fast r-cnn. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1440–
1448.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S.
(2019). A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence
Review, pages 1–62.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In NIPS.
LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker,
J. S., Drucker, H., Guyon, I., Muller, U. A., Sackinger,
E., Simard, P. Y., and Vapnik, V. (1995). Learning
algorithms for classification: A comparison on hand-
written digit recognition. In Oh, J., Kwon, C., and
Cho, S., editors, Neural networks, pages 261–276.
World Scientific.
Li, J., Wang, Y., Wang, C., Tai, Y., Qian, J., Yang, J., Wang,
C., Li, J., and Huang, F. (2018). DSFD: dual shot face
detector. CoRR, abs/1810.10220.
Li, R.-Q., Bian, G.-B., Zhou, X.-H., Xie, X., Ni, Z.-L., and
Hou, Z.-G. (2019). A two-stage framework for real-
time guidewire endpoint localization. In MICCAI.
Lin, T.-Y., Maire, M., Belongie, S. J., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In
ECCV.
L.Shamir (2012). Computer analysis reveals similarities
between the artistic styles of Van Gogh and Pollock.
Leonardo, 45(2):149–154.
Lufan, C. (2019). Keras implementation of faster r-cnn.
https://github.com/moyiliyi/keras-faster-rcnn.
Meier, G. J. (2018). Detecting hands in renaissance era
paintings through a combination of multiple cues.
Master’s thesis, Utrecht University.
M.Fiorucci, M.Khoroshiltseva, M.Pontil, A.Traviglia, Bue,
A., and S.James (2020). Machine learning for cul-
tural heritage: a survey. Pattern Recognition Letters,
133:102–108.
Mzoughi, O., Bigand, A., and Renaud, C. (2018). Face
detection in painting using deep convolutional neural
networks. In Advanced Concepts for Intelligent Vision
Systems (ACIVS), pages 333–341, Cham. Springer In-
ternational Publishing.
Najibi, M., Samangouei, P., Chellappa, R., and Davis, L. S.
(2017). SSH: single stage headless face detector.
CoRR, abs/1708.03979.
Najibi, M., Singh, B., and Davis, L. S. (2018). FA-RPN:
floating region proposals for face detection. CoRR,
abs/1812.05586.
O’Gara, S. and McGuinness, K. (2019). Comparing data
augmentation strategies for deep image classification.
In IMVIP 2019: Irish Machine Vision and Image Pro-
cessing Conference Proceedings.
Qiao, T., Zhang, W., Zhang, M., Ma, Z., and Xu, D. (2019).
Ancient painting to natural image: A new solution for
painting processing. 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 521–
530.
Quang, N. V. and Fujihara, H. (2019). Revisiting a single-
stage method for face detection. 2019 14th IEEE In-
ternational Conference on Automatic Face & Gesture
Recognition (FG 2019), pages 1–8.
Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788.
Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39:1137–1149.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M. S., Berg, A. C., and Li, F.-F. (2015). Ima-
genet large scale visual recognition challenge. Inter-
national Journal of Computer Vision, 115:211–252.
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,
R., and LeCun, Y. (2014). Overfeat: Integrated recog-
nition, localization and detection using convolutional
networks. CoRR, abs/1312.6229.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Stork, D. G. and Johnson, M. K. (2006). Computer vision,
image analysis, and master art: Part 2. IEEE Multi-
Media, 13(4):12–17.
New Challenges of Face Detection in Paintings based on Deep Learning
319