Psychophysiology, 48(2), 252–257.
https://doi.org/10.1111/j.1469-8986.2010.01052.x
Benedek, M., & Kaernbach, C. (2010a). Decomposition of
skin conductance data by means of nonnegative
deconvolution. Psychophysiology, 47(4), 647–658.
Benedek, M., & Kaernbach, C. (2010b). A continuous
measure of phasic electrodermal activity. Journal of
Neuroscience Methods, 190(1), 80–91.
Bobade, P., & Vani, M. (2020). Stress Detection with
Machine Learning and Deep Learning using
Multimodal Physiological Data. In 2020 Second
International Conference on Inventive Research in
Computing Applications (ICIRCA) (pp. 51–57). IEEE.
Boucsein, W. (2012). Electrodermal activity. Springer
Science & Business Media.
Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G.,
Cerutti, S., Cohen, R. J., … Kleiger, R. E. (1996). Heart
rate variability: standards of measurement,
physiological interpretation and clinical use. Task
Force of the European Society of Cardiology and the
North American Society of Pacing and
Electrophysiology.
Cohen, S., Janicki-Deverts, D., & Miller, G. E. (2007).
Psychological Stress and Disease. JAMA, 298(14),
1685–1687. https://doi.org/10.1001/jama.298.14.1685
Critchley, H. D. (2002). Electrodermal responses: What
happens in the brain. Neuroscientist, 8(2), 132–142.
https://doi.org/10.1177/107385840200800209
Epel, E. S., Crosswell, A. D., Mayer, S. E., Prather, A. A.,
Slavich, G. M., Puterman, E., & Mendes, W. B. (2018).
More than a feeling: A unified view of stress
measurement for population science. Frontiers in
Neuroendocrinology, 49(March), 146–169.
https://doi.org/10.1016/j.yfrne.2018.03.001
Ghaderyan, P., & Abbasi, A. (2016). An efficient automatic
workload estimation method based on electrodermal
activity using pattern classifier combinations.
International Journal of Psychophysiology, 110, 91–
101.
Greco, A., Valenza, G., Lanata, A., Scilingo, E. P., & Citi,
L. (2016). cvxEDA: A convex optimization approach to
electrodermal activity processing. IEEE Transactions
on Biomedical Engineering, 63(4), 797–804.
Grimley, S. J., Ko, C. M., Morrell, H. E. R., Grace, F.,
Bañuelos, M. S., Bautista, B. R., … Gurning, J. (2018).
The Need for a Neutral Speaking Period in
Psychosocial Stress Testing. Journal of
Psychophysiology.
Hall, M. A. (1999). Correlation-based feature selection for
machine learning.
Healey, J. A. (2000). Wearable and automotive systems for
affect recognition from physiology. Massachusetts
Institute of Technology.
Hernando-Gallego, F., Luengo, D., & Artés-Rodríguez, A.
(2017). Feature extraction of galvanic skin responses by
nonnegative sparse deconvolution. IEEE Journal of
Biomedical and Health Informatics, 22(5), 1385–1394.
Kelsey, M., Akcakaya, M., Kleckner, I. R., Palumbo, R. V.,
Barrett, L. F., Quigley, K. S., & Goodwin, M. S. (2018).
Applications of sparse recovery and dictionary learning
to enhance analysis of ambulatory electrodermal
activity data. Biomedical Signal Processing and
Control, 40, 58–70.
Kurniawan, H., Maslov, A. V, & Pechenizkiy, M. (2013).
Stress detection from speech and galvanic skin response
signals. In Proceedings of the 26th IEEE International
Symposium on Computer-Based Medical Systems (pp.
209–214). IEEE.
Levenson, R. W. (2014). The autonomic nervous system
and emotion. Emotion Review, 6(2), 100–112.
https://doi.org/10.1177/1754073913512003
Lim, C. L., Rennie, C., Barry, R. J., Bahramali, H., Lazzaro,
I., Manor, B., & Gordon, E. (1997). Decomposing skin
conductance into tonic and phasic components.
International Journal of Psychophysiology, 25(2), 97–
109. https://doi.org/https://doi.org/10.1016/S0167-
8760(96)00713-1
Liu, Y., & Du, S. (2018). Psychological stress level
detection based on electrodermal activity. Behavioural
Brain Research, 341, 50–53.
Lovallo, W. R. (2015). Stress and Health: Biological and
Psychological Interactions. SAGE Publications.
Retrieved from
https://books.google.be/books?id=kXtZDwAAQBAJ
Murugappan, R., Bosco, J. J., Eswaran, K., Vijay, P., &
Vijayaraghavan, V. (2020). User Independent Human
Stress Detection. In 2020 IEEE 10th International
Conference on Intelligent Systems (IS) (pp. 490–497).
IEEE.
Posada-Quintero, H. F., & Bolkhovsky, J. B. (2019).
Machine learning models for the identification of
cognitive tasks using autonomic reactions from heart
rate variability and electrodermal activity. Behavioral
Sciences, 9(4), 45.
Posada-Quintero, H. F., & Chon, K. H. (2020). Innovations
in electrodermal activity data collection and signal
processing: A systematic review. Sensors, 20(2), 479.
Posada-Quintero, H. F., Florian, J. P., Orjuela-Cañón, A.
D., Aljama-Corrales, T., Charleston-Villalobos, S., &
Chon, K. H. (2016a). Power spectral density analysis of
electrodermal activity for sympathetic function
assessment. Annals of Biomedical Engineering, 44(10),
3124–3135.
Posada-Quintero, H. F., Florian, J. P., Orjuela-Cañón, A.
D., & Chon, K. H. (2018). Electrodermal activity is
sensitive to cognitive stress under water. Frontiers in
Physiology, 8, 1128.
Posada-Quintero, H. F., Florian, J. P., Orjuela-Cañón, Á.
D., & Chon, K. H. (2016b). Highly sensitive index of
sympathetic activity based on time-frequency spectral
analysis of electrodermal activity. American Journal of
Physiology-Regulatory, Integrative and Comparative
Physiology, 311(3), R582–R591.
Shukla, J., Barreda-Angeles, M., Oliver, J., Nandi, G. C., &
Puig, D. (2019). Feature extraction and selection for
emotion recognition from electrodermal activity. IEEE
Transactions on Affective Computing.
Smets, E., Casale, P., Großekathöfer, U., Lamichhane, B.,
De Raedt, W., Bogaerts, K., … Van Hoof, C. (2015).
Comparison of machine learning techniques for