estimation can be combined with other localization
data such as odometry using sensor fusion.
The speed of the pose update could be improved
by adopting a more elaborate CNN architecture.
Recent CNN architectures can minimize resource
usage while maintaining good accuracy for their tasks
(Zhang et al., 2018). Further experimentation with
architectures and hyper parameters could also
improve accuracy and inference time.
ACKNOWLEDGEMENTS
This work has been partially supported by MIAI @
Grenoble Alpes, (ANR-19-P3IA-0003).
REFERENCES
Brahmbhatt, S., Gu, J., Kim, K., Hays, J., & Kautz, J.
(2018). Geometry-aware Learning of Maps for camera
localization. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2616–2625.
Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Thrun,
S., Dellaert, F., Bennewitz, M., Rosenberg, C., Roy, N.,
Schulte, J., & Schulz, D. (1999). MINERVA: A second
generation mobile tour-guide robot. Proceedings of the
IEEE International Conference on Robotics and
Automation (ICRA).
Clark, R., Wang, S., Markham, A., Trigoni, N., & Wen, H.
(2017). Vidloc: A deep spatio-temporal model for 6-dof
video-clip relocalization. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2652–2660.
Delibasis, K. K., Plagianakos, V. P., & Maglogiannis, I.
(2015). Estimation of robot position and orientation
using a stationary fisheye camera. International
Journal on Artificial Intelligence Tools, 24(06),
1560004.
Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999).
Monte Carlo localization for mobile robots.
Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), 2,
1322–1328.
Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous
localization and mapping: Part I. IEEE Robotics &
Automation Magazine, 13(2), 99–110.
Ioffe, S., & Szegedy, C. (2015). Batch Normalization:
Accelerating Deep Network Training by Reducing
Internal Covariate Shift. Proceedings of the 32nd
International Conference on Machine Learning.
Jeong, W., & LEE, K. M. (2005). CV-SLAM: a new ceiling
vision-based SLAM technique. 2005 IEEE/RSJ
International Conference on Intelligent Robots and
Systems.
Jin, T., & Lee, J. (2004). Mobile robot navigation by image
classification using a neural network. IFAC
Proceedings Volumes, 37(12), 203–208.
Kendall, A., & Cipolla, R. (2017). Geometric loss functions
for camera pose regression with deep learning. 2017
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 6555–6564.
Kendall, A., & Cipolla, R. (2016). Modelling uncertainty in
deep learning for camera relocalization. 2016 IEEE
International Conference on Robotics and Automation
(ICRA), 4762–4769.
Kendall, A., Grimes, M., & Cipolla, R. (2015). Posenet: A
convolutional network for real-time 6-dof camera
relocalization. 2015 IEEE International Conference on
Computer Vision (ICCV), 2938–2946.
King, S. J., & Weiman, C. F. R. (1991). HelpMate
autonomous mobile robot navigation system (W. H.
Chun & W. J. Wolfe, Eds.; pp. 190–198).
Kotikalapudi, R. A. C. (n.d.). Keras-vis.
https://github.com/raghakot/keras-vis
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet classification with deep convolutional neural
networks. Proceedings of the 25th International
Conference on Neural Information Processing Systems
.
Nourbakhsh, I. (1998). The failures of a self-reliant tour
robot with no planner.
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R.,
Geselowitz, A., Greer, T., ter Haar Romeny, B.,
Zimmerman, J. B., & Zuiderveld, K. (1987). Adaptive
histogram equalization and its variations. Computer
Vision, Graphics, and Image Processing, 39(3), 355–
368
Reddi, S. J., Kale, S., & Kumar, S. (2018). On the
Convergence of Adam and Beyond. International
Conference on Learning Representations.
RobAIR. (n.d.). LIG FabMSTIC.
https://air.imag.fr/index.php/RobAIR
Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed,
S., Anguelov, D., Erhan, D., Vanhoucke, V., &
Rabinovich, A. (2015). Going deeper with
convolutions. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1–9.
Thrun, S. (1998). Finding landmarks for mobile robot
navigation. Proceedings. 1998 IEEE International
Conference on Robotics and Automation (Cat.
No.98CH36146), 2, 958–963.
Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X. (2019)
Dynamic-SLAM: Semantic monocular visual
localization and mapping based on deep learning in
dynamic environment. Robot. Auton. Syst., 117, 1–16.
Zhang, F., Duarte, F., Ma, R., Milioris, H., Lin, H., & Ratti,
C. (2016). Indoor Space Recognition using Deep
Convolutional Neural Network: A Case Study at MIT
Campus. PLoS ONE.
Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet:
An extremely efficient convolutional neural network
for mobile devices. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 6848–6856.